A package with tools for plotting metrics
Project description
plot_metric
|PyPI-Versions| |doc_badge|
Librairie to simplify plotting of metric like ROC curve, confusion matrix etc..
Installation
Using pip :
.. code:: sh
pip install plot-metric
Example
Let's load a simple dataset and make a train & test set :
.. code:: python
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import pandas as pd
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(pd.DataFrame(X), y, test_size=0.2, random_state=42)
Train our classifier and predict our test set :
.. code:: python
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
model = gnb.fit(X_train, y_train)
# Use predict_proba to predict probability of the class
y_pred = gnb.predict_proba(X_test)[:,1]
We can now use plot_metric
to plot ROC Curve, distribution class and classification matrix :
.. code:: python
from plot_metric.functions import BinaryClassification
import matplotlib.pyplot as plt
bc = BinaryClassification(y_test, y_pred, labels=[0, 1])
plt.figure(figsize=(10,9))
plt.subplot(141)
bc.plot_roc()
plt.subplot(142)
bc.plot_class_distribution()
plt.subplot(143)
bc.plot_confusion_matrix()
plt.subplot(144)
bc.plot_confusion_matrix(normalize=True)
plt.show()
bc.print_report()
>>> ________________________
>>> | Classification Report |
>>> ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
>>> precision recall f1-score support
>>> 0 1.00 0.93 0.96 43
>>> 1 0.96 1.00 0.98 71
>>> micro avg 0.97 0.97 0.97 114
>>> macro avg 0.98 0.97 0.97 114
>>> weighted avg 0.97 0.97 0.97 114
.. image:: example/images/example_binary_classification.png
.. |PyPI-Versions| image:: https://img.shields.io/badge/plot__metric-v0.0.3-blue.svg :target: https://pypi.org/project/plot-metric/
.. |doc_badge| image:: https://readthedocs.org/projects/plot-metric/badge/?version=latest :target: https://plot-metric.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file plot_metric-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: plot_metric-0.0.4-py3-none-any.whl
- Upload date:
- Size: 10.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b3507c12b704ea9b229e6afcab87e5073da47c5b28762ec3d051ae94e3113911 |
|
MD5 | 409580884864f66cb45485461bfc9495 |
|
BLAKE2b-256 | 3f69a0f2b48fd4aec52f72110d17986b55080a43a673821a60640dd198d2f0b6 |