Skip to main content

Plot4GMNS: An open-source academic research tool for visualizing multimodal networks for transportation system modeling and optimization

Project description

Plot4GMNS: An open-source academic research tool for visualizing multimodal networks for transportation system modeling and optimization

Codacy Badge Downloads PyPI version LicenseMaintenanceAsk Me Anything !

Authors: Dr. Junhua Chen, Zanyang Cui, Xiangyong Luo

Email: cjh@bjtu.edu.cn, zanyangcui@outlook.com, luoxiangyong01@gmail.com

Table of Contents

Introduction

To enable rapid transportation modeling and optimization, as traffic management researchers, we provide this free open-source tool for visualizing multimodal networks. Based on GMNS data format by Zepha foundation, plot4gmns is designed for reading and plotting multimodal data sets including transportation network files, demand and agent trace files.

Requirements

  • pandas
  • shapely
  • matplotlib
  • numpy
  • seaborn
  • scipy
  • chardet
  • keplergl==0.3.2

Install

pip install plot4gmns

Note

  • For Windows users, the pip method might fail to install some dependencies. If errors occur when you try to install any of those dependencies, try instead to pip install their .whl files, which can be downloaded from the Unoffical Windows Binaries for Python Extension Packages.

Features

  • web-based network visualization
  • show networks in different modes
  • show network with given node types
  • show network by given link types
  • show network by given link attributes range
  • show network by link attributes distribution
  • show network with given POI types
  • show network by poi attributes distribution
  • show network demand matrix heatmap
  • show network demand OD
  • Show only network elements of interest
  • Show different networks on one diagram
  • Set the drawing style

Usage

Before starting, you must have prepared network files, including node.csv, link.csv, poi.csv, demand.csv, and zone.csv. The osm2gmns package will help you quickly obtain node, link, and poi data, and the grid2demand package will help you obtain network demand and zone information.

Quickstart

Step 1: generate multimodal network

import plot4gmns as p4g
mnet=p4g.generate_multi_network_from_csv(r'./datasets')

After executing the above command, you will get an Html file, as shown below. More visual operations are supported on the web site..


Step 2: show networks in different modes

# draw 'all' modes network and save to png file
cf = p4g.show_network_by_modes(mnet=mnet)
# show the figure on the current window
cf.show()


# show 'bike' mode network
cf = p4g.show_network_by_modes(mnet=mnet,modes=['bike'])
cf.show() # show the figure on the current window


Step 3: show network with given node types

cf = p4g.show_network_by_node_types(mnet=mnet,osm_highway=['traffic_signals','crossing'])
cf.show()


Step 4: show network by given link types

# show network by given link types
cf = p4g.show_network_by_link_types(mnet=mnet,link_types=['secondary','footway'])
cf.show()


Step 5: show network by given link attributes range

# show network by given link length range
cf = p4g.show_network_by_link_length(mnet=mnet,min_length=10,max_length=50)
cf.show()


# show network by given link lane range
cf = p4g.show_network_by_link_lanes(mnet=mnet,min_lanes=1,max_lanes=3)
cf.show()


# show network by given link free speed range
cf = p4g.show_network_by_link_free_speed(mnet=mnet,min_free_speed=10,max_free_speed=40)
cf.show()


Step 6: show network by link attributes distribution

# show network by link lane distribution
cf = p4g.show_network_by_link_lane_distribution(mnet=mnet)
cf.show()


# show network by link capacity distribution
cf = p4g.show_network_by_link_capacity_distribution(mnet=mnet)
cf.show()


# show network by link free speed distribution
cf = p4g.show_network_by_link_free_speed_distribution(mnet=mnet)
cf.show()


Step 7: show network with given POI types

cf = p4g.show_network_by_poi_types(mnet=mnet,poi_type=['public','industrial'])
cf.show()


Step 8: show network by poi attributes distribution

# show network by poi attraction distribution
cf = p4g.show_network_by_poi_attraction_distribution(mnet=mnet)
cf.show()


# show network by poi production distribution
cf = p4g.show_network_by_poi_production_distribution(mnet=mnet)
cf.show()


Step 9: show network demand matrix heatmap

cf = p4g.show_network_demand_matrix_heatmap(mnet)
cf.show()


Step 10: show network demand OD

cf = p4g.show_network_by_demand_OD(mnet=mnet,load_network=True)
cf.show()


Advance Usage

Step 1: Show only network elements of interest

The tool displays all elements by default, such as nodes, links, and POIs. If you want to display only the elements of interest, you can refer to the following example to modify the state of other elements before invoking the drawing command.

# not show nodes
mnet.node_loaded = False
cf = p4g.show_network_by_link_lane_distribution(mnet=mnet)
cf.show()


Step 2: Show different networks on one diagram

By default, this tool will clear the original contents before drawing. If you want to draw different content on a graph, you can refer to the following example

mnet.node_loaded = False
mnet.POI_loaded = False
cf = p4g.show_network_by_link_lane_distribution(mnet=mnet)
mnet.link_loaded = False
mnet.POI_loaded = True
cf = p4g.show_network_by_poi_attraction_distribution(mnet,fig_obj=cf)
cf.show()


Step 3: Set the drawing style

Users can refer to the following examples to adjust the color, size and other attributes of the image before drawing.

parameter Value Description
mnet.style.figure_size tuple,(width,height) Image size
mnet.style.dpi int the resolution in dots per inch.
mnet.style.node_style.size int node marker size
mnet.style.node_style.colors dict,{node_type:color} node color in different types
mnet.style.node_style.markers dict,{node_type:marker} node marker in different types
mnet.style.link_style.linecolor str link color
mnet.style.link_style.linewidth float link width
mnet.style.poi_style.facecolor str POI facecolor
mnet.style.poi_style.edgecolor str POI edgecolor
mnet.style.demand_style.linecolor str demand flow line color
mnet.style.demand_style.linelinewidth float demand flow line width
mnet.style.zone_style.linewidth float zone grid line width
mnet.style.zone_style.edgecolors str zone grid edgecolors
mnet.style.zone_style.fontsize int zone label font size
mnet.style.zone_style.fontcolor str zone label font color
mnet.style.node_style.size = 3
mnet.style.link_style.linecolor = 'green'
mnet.style.poi_style.facecolor = 'gray'
cf = p4g.show_network_by_modes(mnet=mnet)
cf.show()


Contributing

Feel free to dive in! Open an issue.

Contributors

@PraiseC

@xyluo25

Changelog

2023-01-25 -- v0.1.1:

Support web-based network visualization(Kepler.gl)

TODO LIST

  1. Add OD 3D visualization

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plot4gmns-0.1.3.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

plot4gmns-0.1.3-py3-none-any.whl (20.8 kB view details)

Uploaded Python 3

File details

Details for the file plot4gmns-0.1.3.tar.gz.

File metadata

  • Download URL: plot4gmns-0.1.3.tar.gz
  • Upload date:
  • Size: 22.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for plot4gmns-0.1.3.tar.gz
Algorithm Hash digest
SHA256 2583fa0b145ecf73cda3e544d77e6c679e245f89532289b3f853debd7c91cfdf
MD5 a85540cfd012b4bf138928d21fe61821
BLAKE2b-256 7d5f81de960ad897814cf2452d678e3145e44f2a5f2e11d928cc7ea613ec75d6

See more details on using hashes here.

File details

Details for the file plot4gmns-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: plot4gmns-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 20.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for plot4gmns-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 59c1957b86df83107c278a223d8fce24c549452daa41cc3f10ffa0ccbc2e56ed
MD5 0db098cfc9e77c81501e16813c05ec1d
BLAKE2b-256 56ab656d40eaebb93308218270874725a5844d31bdf01898ecd1e0c6150fdcf1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page