Skip to main content

A Grammar of Graphics for Python

Project description

plotnine

Release License DOI Build Status Coverage

plotnine is an implementation of a grammar of graphics in Python based on ggplot2. The grammar allows you to compose plots by explicitly mapping variables in a dataframe to the visual characteristics (position, color, size etc.) of objects that make up the plot.

Plotting with a grammar of graphics is powerful. Custom (and otherwise complex) plots are easy to think about and build incrementally, while the simple plots remain simple to create.

To learn more about how to use plotnine, check out the documentation. Since plotnine has an API similar to ggplot2, where it lacks in coverage the ggplot2 documentation may be helpful.

Example

from plotnine import *
from plotnine.data import mtcars

Building a complex plot piece by piece.

  1. Scatter plot

    (
        ggplot(mtcars, aes("wt", "mpg"))
        + geom_point()
    )
    
  2. Scatter plot colored according some variable

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
    )
    
  3. Scatter plot colored according some variable and smoothed with a linear model with confidence intervals.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
    )
    
  4. Scatter plot colored according some variable, smoothed with a linear model with confidence intervals and plotted on separate panels.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
    )
    
  5. Adjust the themes

    I) Make it playful

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_xkcd()
    )
    

    II) Or professional

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_tufte()
    )
    

Installation

Official release

# Using pip
$ pip install plotnine             # 1. should be sufficient for most
$ pip install 'plotnine[extra]'    # 2. includes extra/optional packages
$ pip install 'plotnine[test]'     # 3. testing
$ pip install 'plotnine[doc]'      # 4. generating docs
$ pip install 'plotnine[dev]'      # 5. development (making releases)
$ pip install 'plotnine[all]'      # 6. everything

# Or using conda
$ conda install -c conda-forge plotnine

Development version

$ pip install git+https://github.com/has2k1/plotnine.git

Contributing

Our documentation could use some examples, but we are looking for something a little bit special. We have two criteria:

  1. Simple looking plots that otherwise require a trick or two.
  2. Plots that are part of a data analytic narrative. That is, they provide some form of clarity showing off the geom, stat, ... at their differential best.

If you come up with something that meets those criteria, we would love to see it. See plotnine-examples.

If you discover a bug checkout the issues if it has not been reported, yet please file an issue.

And if you can fix a bug, your contribution is welcome.

Testing

Plotnine has tests that generate images which are compared to baseline images known to be correct. To generate images that are consistent across all systems you have to install matplotlib from source. You can do that with pip using the command.

$ pip install matplotlib --no-binary matplotlib

Otherwise there may be small differences in the text rendering that throw off the image comparisons.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotnine-0.14.1.tar.gz (6.4 MB view details)

Uploaded Source

Built Distribution

plotnine-0.14.1-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file plotnine-0.14.1.tar.gz.

File metadata

  • Download URL: plotnine-0.14.1.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for plotnine-0.14.1.tar.gz
Algorithm Hash digest
SHA256 c24cc5a5c38caf0296faa59fc5bf2a131bce0872991021eb1740a7567b93774a
MD5 897ef0c2c980e15378b716c9f60609bb
BLAKE2b-256 c18d5b134e803a8c9c30882004812c488d65683a67c558bdf5dc895a1583848b

See more details on using hashes here.

Provenance

The following attestation bundles were made for plotnine-0.14.1.tar.gz:

Publisher: release.yml on has2k1/plotnine

Attestations:

File details

Details for the file plotnine-0.14.1-py3-none-any.whl.

File metadata

  • Download URL: plotnine-0.14.1-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for plotnine-0.14.1-py3-none-any.whl
Algorithm Hash digest
SHA256 66b53d73211d11e12173ef7920a5127a4acc896d2c086c9c8bab378b93ad6d39
MD5 acd4e72df679562baf23b40a282409d2
BLAKE2b-256 ba9035facc8f88e2b0bde20d2d067a0f4fe68f1bcf3c69f5b2ca63e7688cef12

See more details on using hashes here.

Provenance

The following attestation bundles were made for plotnine-0.14.1-py3-none-any.whl:

Publisher: release.yml on has2k1/plotnine

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page