Skip to main content

A grammar of graphics for python

Project description

########
plotnine
########

================= =================
Latest Release |release|_
License |license|_
Build Status |buildstatus|_
Coverage |coverage|_
Documentation |documentation|_
================= =================

.. raw:: html

<img src="https://github.com/has2k1/plotnine/blob/master/doc/images/logo-180.png" align="right"'>

plotnine is an implementation of a *grammar of graphics* in Python,
it is based on ggplot2_. The grammar allows users to compose plots
by explicitly mapping data to the visual objects that make up the
plot.

Plotting with a grammar is powerful, it makes custom (and otherwise
complex) plots are easy to think about and then create, while the
simple plots remain simple.

To find out about all building blocks that you can use to create a
plot, check out the documentation_. Since plotnine has an API
similar to ggplot2, where we lack in coverage the
`ggplot2 documentation`_ may be of some help.

Example
-------

Building a complex plot piece by piece.

1. Scatter plot

.. code:: python

(ggplot(mtcars, aes('wt', 'mpg'))
+ geom_point())

.. figure:: ./doc/images/readme-image-1.png

2. Scatter plot colored according some variable

.. code:: python

(ggplot(mtcars, aes('wt', 'mpg', color='factor(gear)'))
+ geom_point())

.. figure:: ./doc/images/readme-image-2.png

3. Scatter plot colored according some variable and
smoothed with a linear model with confidence intervals.

.. code:: python

(ggplot(mtcars, aes('wt', 'mpg', color='factor(gear)'))
+ geom_point()
+ stat_smooth(method='lm'))

.. figure:: ./doc/images/readme-image-3.png

4. Scatter plot colored according some variable,
smoothed with a linear model with confidence intervals and
plotted on separate panels.

.. code:: python

(ggplot(mtcars, aes('wt', 'mpg', color='factor(gear)'))
+ geom_point())
+ stat_smooth(method='lm')
+ facet_wrap('~gear'))

.. figure:: ./doc/images/readme-image-4.png

5. Make it playful

.. code:: python

(ggplot(mtcars, aes('wt', 'mpg', color='factor(gear)'))
+ geom_point())
+ stat_smooth(method='lm')
+ facet_wrap('~gear')
+ theme_xkcd())

.. figure:: ./doc/images/readme-image-5.png


Installation
------------

Official release

.. code-block:: console

$ pip install plotnine # 1. should be sufficient for most
$ pip install plotnine[all] # 2. includes extra/optional packages


Development version

.. code-block:: console

$ pip install git+https://github.com/has2k1/plotnine.git

Contributing
------------
Our documentation could use some examples, but we are looking for something
a little bit special. We have two criteria:

1. Simple looking plots that otherwise require a trick or two.
2. Plots that are part of a data analytic narrative. That is, they provide
some form of clarity showing off the `geom`, `stat`, ... at their
differential best.

If you come up with something that meets those criteria, we would love to
see it. See plotnine-examples_.

If you discover a bug checkout the issues_ if it has not been reported,
yet please file an issue.

And if you can fix a bug, your contribution is welcome.

.. |release| image:: https://img.shields.io/pypi/v/plotnine.svg
.. _release: https://pypi.python.org/pypi/plotnine

.. |license| image:: https://img.shields.io/pypi/l/plotnine.svg
.. _license: https://pypi.python.org/pypi/plotnine

.. |buildstatus| image:: https://api.travis-ci.org/has2k1/plotnine.svg?branch=master
.. _buildstatus: https://travis-ci.org/has2k1/plotnine

.. |coverage| image:: https://coveralls.io/repos/github/has2k1/plotnine/badge.svg?branch=master
.. _coverage: https://coveralls.io/github/has2k1/plotnine?branch=master

.. |documentation| image:: https://readthedocs.org/projects/plotnine/badge/?version=latest
.. _documentation: https://plotnine.readthedocs.io/en/latest/

.. _ggplot2: https://github.com/tidyverse/ggplot2

.. _`ggplot2 documentation`: http://ggplot2.tidyverse.org/reference/index.html

.. _issues: https://github.com/has2k1/plotnine/issues

.. _plotnine-examples: https://github.com/has2k1/plotnine-examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotnine-0.1.0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distribution

plotnine-0.1.0-py2.py3-none-any.whl (3.2 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file plotnine-0.1.0.tar.gz.

File metadata

  • Download URL: plotnine-0.1.0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for plotnine-0.1.0.tar.gz
Algorithm Hash digest
SHA256 ee0e4c55f373fb84433d50bcc6acf1b5eab1a05fd5e21378ebdcc7306453aa76
MD5 55d87ffd54da1a7ed436241159393b3e
BLAKE2b-256 4593851ce9c23d0565e65f4fb69319a837078ab7e26a71ff9100d775df6d3e07

See more details on using hashes here.

File details

Details for the file plotnine-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for plotnine-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ea89159dd94c3cd1149ae5464eab81187c31ffbff977df30c14300e42736e563
MD5 39dd3466360f89f0bb2829464df28781
BLAKE2b-256 fd271b3f63322cb80f0db49e6ff71845446466347075912b0f31e176f8d37fc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page