Skip to main content

A Grammar of Graphics for Python

Project description

plotnine

Release License DOI Build Status Coverage

plotnine is an implementation of a grammar of graphics in Python based on ggplot2. The grammar allows you to compose plots by explicitly mapping variables in a dataframe to the visual objects that make up the plot.

Plotting with a grammar of graphics is powerful. Custom (and otherwise complex) plots are easy to think about and build incrementaly, while the simple plots remain simple to create.

To learn more about how to use plotnine, check out the documentation. Since plotnine has an API similar to ggplot2, where it lacks in coverage the ggplot2 documentation may be helpful.

Example

from plotnine import *
from plotnine.data import mtcars

Building a complex plot piece by piece.

  1. Scatter plot

    (
        ggplot(mtcars, aes("wt", "mpg"))
        + geom_point()
    )
    
  2. Scatter plot colored according some variable

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
    )
    
  3. Scatter plot colored according some variable and smoothed with a linear model with confidence intervals.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
    )
    
  4. Scatter plot colored according some variable, smoothed with a linear model with confidence intervals and plotted on separate panels.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
    )
    
  5. Adjust the themes

    I) Make it playful

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_xkcd()
    )
    

    II) Or professional

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_tufte()
    )
    

Installation

Official release

# Using pip
$ pip install plotnine             # 1. should be sufficient for most
$ pip install 'plotnine[extra]'    # 2. includes extra/optional packages
$ pip install 'plotnine[test]'     # 3. testing
$ pip install 'plotnine[doc]'      # 4. generating docs
$ pip install 'plotnine[dev]'      # 5. development (making releases)
$ pip install 'plotnine[all]'      # 6. everyting

# Or using conda
$ conda install -c conda-forge plotnine

Development version

$ pip install git+https://github.com/has2k1/plotnine.git

Contributing

Our documentation could use some examples, but we are looking for something a little bit special. We have two criteria:

  1. Simple looking plots that otherwise require a trick or two.
  2. Plots that are part of a data analytic narrative. That is, they provide some form of clarity showing off the geom, stat, ... at their differential best.

If you come up with something that meets those criteria, we would love to see it. See plotnine-examples.

If you discover a bug checkout the issues if it has not been reported, yet please file an issue.

And if you can fix a bug, your contribution is welcome.

Testing

Plotnine has tests that generate images which are compared to baseline images known to be correct. To generate images that are consistent across all systems you have to install matplotlib from source. You can do that with pip using the command.

$ pip install matplotlib --no-binary matplotlib

Otherwise there may be small differences in the text rendering that throw off the image comparisons.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotnine-0.13.4.tar.gz (6.2 MB view details)

Uploaded Source

Built Distribution

plotnine-0.13.4-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file plotnine-0.13.4.tar.gz.

File metadata

  • Download URL: plotnine-0.13.4.tar.gz
  • Upload date:
  • Size: 6.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for plotnine-0.13.4.tar.gz
Algorithm Hash digest
SHA256 754269cd4ee36f4f1b1d00c568bb602ef67636f1a18e2555e7bd364e607beef6
MD5 248a41569fbe4ba85d456f8e34da1bd4
BLAKE2b-256 ad45379b055416586cb7909db6c71a53d68936ad9d0dc03eaa231187f19bc2a1

See more details on using hashes here.

File details

Details for the file plotnine-0.13.4-py3-none-any.whl.

File metadata

  • Download URL: plotnine-0.13.4-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for plotnine-0.13.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5eb6c74d1bfcceba460bb3fb362c8c371a766ed336c3adedd19eae8f1a4468f4
MD5 cf3fa8c332e0bcce6717c528790c2bd0
BLAKE2b-256 f71cd0cc3272f7550253b46f6f1e86f02c046aa4c5841646c0435c32a93dd177

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page