Skip to main content

A Grammar of Graphics for Python

Project description

plotnine

Release License DOI Build Status Coverage

plotnine is an implementation of a grammar of graphics in Python based on ggplot2. The grammar allows you to compose plots by explicitly mapping variables in a dataframe to the visual characteristics (position, color, size etc.) of objects that make up the plot.

Plotting with a grammar of graphics is powerful. Custom (and otherwise complex) plots are easy to think about and build incrementally, while the simple plots remain simple to create.

To learn more about how to use plotnine, check out the documentation. Since plotnine has an API similar to ggplot2, where it lacks in coverage the ggplot2 documentation may be helpful.

Example

from plotnine import *
from plotnine.data import mtcars

Building a complex plot piece by piece.

  1. Scatter plot

    (
        ggplot(mtcars, aes("wt", "mpg"))
        + geom_point()
    )
    
  2. Scatter plot colored according some variable

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
    )
    
  3. Scatter plot colored according some variable and smoothed with a linear model with confidence intervals.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
    )
    
  4. Scatter plot colored according some variable, smoothed with a linear model with confidence intervals and plotted on separate panels.

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
    )
    
  5. Adjust the themes

    I) Make it playful

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_xkcd()
    )
    

    II) Or professional

    (
        ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
        + geom_point()
        + stat_smooth(method="lm")
        + facet_wrap("gear")
        + theme_tufte()
    )
    

Installation

Official release

# Using pip
$ pip install plotnine             # 1. should be sufficient for most
$ pip install 'plotnine[extra]'    # 2. includes extra/optional packages
$ pip install 'plotnine[test]'     # 3. testing
$ pip install 'plotnine[doc]'      # 4. generating docs
$ pip install 'plotnine[dev]'      # 5. development (making releases)
$ pip install 'plotnine[all]'      # 6. everything

# Or using conda
$ conda install -c conda-forge plotnine

Development version

$ pip install git+https://github.com/has2k1/plotnine.git

Contributing

Our documentation could use some examples, but we are looking for something a little bit special. We have two criteria:

  1. Simple looking plots that otherwise require a trick or two.
  2. Plots that are part of a data analytic narrative. That is, they provide some form of clarity showing off the geom, stat, ... at their differential best.

If you come up with something that meets those criteria, we would love to see it. See plotnine-examples.

If you discover a bug checkout the issues if it has not been reported, yet please file an issue.

And if you can fix a bug, your contribution is welcome.

Testing

Plotnine has tests that generate images which are compared to baseline images known to be correct. To generate images that are consistent across all systems you have to install matplotlib from source. You can do that with pip using the command.

$ pip install matplotlib --no-binary matplotlib

Otherwise there may be small differences in the text rendering that throw off the image comparisons.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotnine-0.14.0.tar.gz (6.4 MB view details)

Uploaded Source

Built Distribution

plotnine-0.14.0-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file plotnine-0.14.0.tar.gz.

File metadata

  • Download URL: plotnine-0.14.0.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for plotnine-0.14.0.tar.gz
Algorithm Hash digest
SHA256 377f40eec2b4c43fa9208853f98b6f1489845e1219dcbfdd5aad73460da6146e
MD5 da09bf11aea1c7adb92936beecc8cce9
BLAKE2b-256 8d69a2806c6f535f5dcc37408c8d4f104a553c8a0a502d3cdcf13a28790e4da4

See more details on using hashes here.

File details

Details for the file plotnine-0.14.0-py3-none-any.whl.

File metadata

  • Download URL: plotnine-0.14.0-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for plotnine-0.14.0-py3-none-any.whl
Algorithm Hash digest
SHA256 12ba4f65bd5353b22a892c5398463a7483b133753861ed1efc7543e5907f65d7
MD5 8c355d7a2311c7b6ffb0aea1dae67cd4
BLAKE2b-256 21f85a3a10057987a793323a44872f728184e01a60bdb65e993ede8a08609241

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page