Skip to main content

A wordy but intuitive plotting library.

Project description

Plotxel

Control your plots down to the pixel!
Ever have trouble moving a chart to the right? Moving your axis up? Getting rid of ticks? Then try out Plotxel!

It's wordy, slow, and unnecessary 99% of the time. But that 1%, you'll be glad you have Plotxel.

Installation

pip3 install plotxel

Example

Example Image

from plotxel import Plotxel, Axis

x = Plotxel()  # our main drawing canvas in x, y

# add some data as a series. The series name, the x data, and y data
series1 = [i for i in range(10)]
x.add_data('series1', series1, series1)
x.add_data('series2', [1, 2, 3, 4, 5, 10], [5, 2, 1, 4, 3, 10])
x.add_data('series3', [10, 5, 4, 3, 2, 1], [5, 2, 1, 4, 3, 10])

# left plot -- its name, type, and data it's linked to
plot1 = x.add_drawable("plot1", "Scatter", ["series1", 'series2', 'series3'])
plot1.title = 'Analysis of Goose Encounters'
plot1.pos = [60, 50]
plot1.title_offset = 23
plot1.marker_opacity = {.5}  # this must be a set so it can iterate through data. Will make this more intuitive

# right plot and its position. Same data as plot1
plot2 = x.add_drawable("plot2", "Scatter", "series1")
# set a bunch of attributes at once!
plot2.setattrs(
    ylim=[-1, 10],
    xlim=[-1, 10],
    pos=[450, 50],
    marker_shape='square',
    marker_fill_color=(255, 0, 0),
    title='Analysis of Goose Encounters (red)',
    line_width = 0
)

# add some axes, and link them to our plots. It will copy the size, position, scale, and limits of whichever plot it is linked to
ax1 = x.add_drawable("ax1", 'YAxis', link_to="plot1")
ax1.axis_offset = 10
ax1.title_offset = 25  # distance from the ticks. Will have an auto feature in the future!
ax1.title = "Near Death Experiences With Geese"

# all other axes, let's put them flush with the graph by changing the default
# defaults are copied at the time the object is initialized, so this won't affect ax1
Axis.defaults['axis_offset'] = -1
ax1b = x.add_drawable('ax1b', 'XAxis', link_to='plot1')

# you can keep setting attributes in bulk
ax1r = x.add_drawable('ax1r', 'YAxis', link_to='plot1', title_offset=20)
ax1r.setattrs(
    side='right',
    title_offset=20,
    title='Ax1 Right Title'
)

ax1t = x.add_drawable('ax1t', 'XAxis', link_to='plot1')
ax1t.setattrs(
    side='top',
    title=''
)

# or use the constructor!
x.add_drawable("ax2", 'YAxis', link_to="plot2", title_offset=20, side='right', axis_offset=10)

ax3 = x.add_drawable("ax3", 'XAxis', link_to="plot2")
ax3.setattrs(
    side='bottom',
    axis_offset=10,
    title="Number of Freaking Geese",
)


# I think I would prefer axes to be blue!
Axis.defaults['color'] = (0, 0, 255)

# let's add some bar chart data. Since it's a vertical bar chart, we will pull Y data
# the labels aren't implemented quite yet
x.add_data('bar_data', ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'], [1, 9, 4, 5, 3, 6, 2])
x.add_data('bar_data2', ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'], [1, 7, 4, 3, 4, 5, 1])
x.add_data('bar_data3', ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'], [-3, 14, 2, 1, 2, 7, 9])

plot3 = x.add_drawable('bar1', 'Bar', ['bar_data', 'bar_data2', 'bar_data3'])
# or unpack a dict
plot3_attrs = {
    'pos': (150, 300),
    'dim': (500, 150),
    'ylim': [-5, 15],
    'group_spacing': 30,
    'bar_spacing': 0,
    'title': 'Safely Navigating Geese'
}
plot3.setattrs(**plot3_attrs)

x.add_drawable('ax4', 'YAxis', link_to="bar1", title='Likelihood of Goose Attack', title_offset=25)
# x.add_drawable('ax5', 'XAxis', link_to='bar1', title='Day of Week', title_offset=5)

# coming soon, Jupyter magic!
# x.anti_aliasing=False
x.show()

# or for SVG
# svg_html = x.draw()

# or for image  in BytesIO / save to filename
# x.render(filename='example2.png')

This program is being developed based on my own needs, and unfortunately I don't do a lot of plotting today, therefore I don't need a lot of features.

In any case, I'll be prioritizing features, up next is bar charts and histograms!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plotxel-0.0.9.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

plotxel-0.0.9-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file plotxel-0.0.9.tar.gz.

File metadata

  • Download URL: plotxel-0.0.9.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for plotxel-0.0.9.tar.gz
Algorithm Hash digest
SHA256 503e3d12b48eb4a4f400126b95317a254b9dd399942bfb5e1a01142dee61573a
MD5 aabbccc9d0e282e0d63f67ded3bcd735
BLAKE2b-256 1eb827ba6cf9f7a86fdf4dbf1c0db7c854e64656ad9dfa256de775e21a907a82

See more details on using hashes here.

File details

Details for the file plotxel-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: plotxel-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.4

File hashes

Hashes for plotxel-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 2e0bf3f0df70da613620fe6074197dc67f9c5e6268511fbf53c95a2056360a9b
MD5 754b3bc642aeb7d5a0617db08a1f754f
BLAKE2b-256 53476d3ff2a6766ac216a0d8cbb2162c9aaf4a8ceae9045086f4cc13b81e2378

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page