Skip to main content

No project description provided

Project description

Plstab = plane-stabilization envirnoment

This is a simple env. based on OpenAI Gym library. Envirnoment for training reinforcement learning (RL) agents.

Example of code to launch enviroment

import plstab
import numpy as np
import gymnasium as gym

env = gym.make('PlaneStab-v0', render_mode='human', wind_mode=3) # create env
obs, info = env.reset(seed=42)

for _ in range(100):
   action = np.zeros(2) # sample action
   obs, reward, terminated, truncated, info = env.step(action) # step env


   if terminated or truncated: # reset if episode ends
      obs, info = env.reset()
     
   env.render()

env.close()

args:

name or arg available value default value
render_mode "human", None None
wind_mode $ {0, 1, 2, 3} $ 0
wind_mag $x \in [0, \infty ]$ 4.0
reward_fn lambda X, Vx, Y, Vy, Phi, Omega: ... None

wind mode provides to 1 of 4 wind models:

  • 0: off (zero windspeed)
  • 1: no_gust (wind without randonmness)
  • 2: simple (simple gust model)
  • 3: dryden (dryden's turbulence model)

Observation space:

8-dim numpy vector which contains: [X, Vx, Y, Vy, Phi, Omega, Wx, Wy], where

  • X - x-component of pos
  • Vx - x-component of velocity
  • Y - y-component of pos
  • Vy - y-component of velocity
  • Phi - pitch angle of airplane
  • Omega - derivative of Phi
  • Wx - x-component of wind speed
  • Wy - y-component of wind speed

Action space:

Actions are:

  • rate of propeler [-1, 1] -> [0, max]
  • angle of elevator [-1, 1] -> [-15, 15] (degrees)

Rewards:

By defalt:

-(Phi ** 2 + 0.1 * Omega ** 2 + 0.01 * alpha ** 2)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plstab-0.1.0.tar.gz (68.4 kB view details)

Uploaded Source

Built Distribution

plstab-0.1.0-py3-none-any.whl (62.4 kB view details)

Uploaded Python 3

File details

Details for the file plstab-0.1.0.tar.gz.

File metadata

  • Download URL: plstab-0.1.0.tar.gz
  • Upload date:
  • Size: 68.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.12 Linux/6.8.0-76060800daily20240311-generic

File hashes

Hashes for plstab-0.1.0.tar.gz
Algorithm Hash digest
SHA256 eaa9caa1e4ae2739bf30688976a35685267a0fe5e1ddf45ced7894deaa62e80d
MD5 e18fb5930e816a8972385657d94f3afa
BLAKE2b-256 9e319e7e3757e697e7d65236468aac783461dec2f1ff43edb701abaec04eb49e

See more details on using hashes here.

File details

Details for the file plstab-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: plstab-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 62.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.10.12 Linux/6.8.0-76060800daily20240311-generic

File hashes

Hashes for plstab-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2fa1f4f578ea695c1fe4e2572a3b3eda5ad88bd7439377321bb4aede576dfd6a
MD5 d2ec586c3fdcacc1daedaffa69328d66
BLAKE2b-256 51bc3be4b7bb502cf29ba2fbad95a9dfe2fe7cb9969f425319fac5cc34f6ac56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page