Skip to main content

Standardized plots and visualizations in Python

Project description


rtd ci codecov pyversions pypi pypistatus license coc codestyle colab

Standardized plots and visualizations in Python

pltviz is a Python package for standardized visualization. Routine and novel plotting approaches are formatted to allow for easy variation while providing quick and exact results. Coloration functions are also included for precise colors across plots and to assure that all functions can be ran with color hexes.

Contents

Installation

pltviz can be downloaded from PyPI via pip or sourced directly from this repository:

pip install pltviz
git clone https://github.com/andrewtavis/pltviz.git
cd pltviz
python setup.py install
import pltviz

plot

Plotting methods within pltviz are tailored to provide quick results for staples of data visualization.

See examples/plot for all plotting styles that seamlessly combine graphing functions of seaborn, matplotlib, and pandas.

import matplotlib.pyplot as plt
import pltviz

Examples of routine plotting techniques made easy are:

# The following will be used for the remaining examples

# German political parties
parties = ['CDU/CSU', 'FDP', 'Greens', 'Die Linke', 'SPD', 'AfD']
party_colors = ['#000000', '#ffed00', '#64a12d', '#be3075', '#eb001f', '#009ee0']

# Hypothetical seat allocations to the Bundestag (German parliament)
seat_allocations = [26, 9, 37, 12, 23, 5]

The following shows pltviz.bar that allows all common options to be selected as binaries:

# Bar plot options such as stacked and label bars are booleans
ax = pltviz.bar(
    counts=seat_allocations,
    labels=parties,
    colors=party_colors,
    horizontal=False,
    stacked=False,
    label_bars=True,
)

# Initialize empty handles and labels
handles, labels = pltviz.legend.gen_elements()

# Add a majority line
ax.axhline(int(sum(seat_allocations) / 2) + 1, ls="--", color="black")
handles.insert(0, Line2D([0], [0], linestyle="--", color="black"))
labels.insert(0, "Majority: {} seats".format(int(sum(seat_allocations) / 2) + 1))

ax.legend(
    handles=handles,
    labels=labels,
    title="Bundestag: {} seats".format(sum(seat_allocations)),
    loc="upper left",
    bbox_to_anchor=(0, 0.9),
    title_fontsize=20,
    fontsize=15,
    frameon=True,
    facecolor="#FFFFFF",
    framealpha=1,
)

ax.set_ylabel("Seats", fontsize=15)
ax.set_xlabel("Party", fontsize=15)

Also included is a pltviz.semipie via matplotlib artists for cases where a simple and condensed plot is needed:

ax = pltviz.semipie(counts=seat_allocations, colors=party_colors, donut_ratio=0.5)

handles, labels = pltviz.legend.gen_elements(
    counts=seat_allocations,
    labels=parties,
    colors=party_colors,
)

ax.legend(
    handles=handles,
    labels=labels,
    title="Bundestag: {} seats".format(sum(seat_allocations)),
    title_fontsize=20,
    fontsize=14,
    ncol=2,
    loc="center",
    bbox_to_anchor=(0.5, 0.17),
    frameon=False,
    facecolor="#FFFFFF",
    framealpha=1,
)

plt.show()

pltviz also includes specialized plots such as pltviz.gini to visualize gini coefficients of inequality:

global_gdp_deciles = [0.49, 0.59, 0.69, 0.79, 1.89, 2.55, 5.0, 10.0, 18.0, 60.0]

ax, gini_coeff = pltviz.gini(shares=global_gdp_deciles)

handles, labels = pltviz.legend.gen_elements(labels=["Lorenz Curve", "Perfect Equality"])

ax.legend(
    handles=handles,
    labels=labels,
    loc='upper left',
    bbox_to_anchor=(0, 0.9),
    fontsize=20,
    frameon=True,
    facecolor='#FFFFFF',
    framealpha=1)

ax.set_title(f'Gini: {gini_coeff}', fontsize=20)
ax.set_ylabel('Cuumlative Share of Global GDP', fontsize=15)
ax.set_xlabel('Income Deciles', fontsize=15)

plt.show()

To-Do

Please see the contribution guidelines if you are interested in contributing to this project. Work that is in progress or could be implemented includes:

  • Adding standardized examples of further plots and visualizations (see issue)

  • Finishing the coloration on the outer ring of pltviz.pie

  • Improving tests for greater code coverage

  • Improving code quality by refactoring large functions and checking conventions

  • Allowing all plotting variations to be seamlessly plotted from either lists or dataframe columns where applicable

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pltviz-1.0.1-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file pltviz-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: pltviz-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 18.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.7.9

File hashes

Hashes for pltviz-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 7ad636aa112affd778612a241127fc4f715844ea46e18b87a4e04a5f015e4e18
MD5 085e54763324d95608a00fa5f0d46383
BLAKE2b-256 1fd94a97f81656aa6351bc17120655db806685b6b154bf5115fd45e6546883c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page