Skip to main content

A simpe package to rapidly postprocessing the output of plumed benchmarks

Project description

Plumed-Bench-PP

PyPI - Version PyPI - Python Version Hatch project Documentation Status

A small toolset for postprocess plumed benchmark and the plumed time report at the end of the simulations

as now it can extract a dict from a file like:

BENCH:  Kernel:      this
BENCH:  Input:       plumed.dat
BENCH:  Comparative: 1.000 +- 0.000
BENCH:                                                Cycles        Total      Average      Minimum      Maximum
BENCH:  A Initialization                                   1     0.214297     0.214297     0.214297     0.214297
BENCH:  B0 First step                                      1     0.062736     0.062736     0.062736     0.062736
BENCH:  B1 Warm-up                                       199    12.618833     0.063411     0.055884     0.076860
BENCH:  B2 Calculation part 1                            400    25.567659     0.063919     0.054110     0.113234
BENCH:  B3 Calculation part 2                            400    25.594014     0.063985     0.059516     0.102646
PLUMED:                                               Cycles        Total      Average      Minimum      Maximum
PLUMED:                                                    1    64.054325    64.054325    64.054325    64.054325
PLUMED: 1 Prepare dependencies                          1000     0.003443     0.000003     0.000001     0.000013
PLUMED: 2 Sharing data                                  1000     0.305915     0.000306     0.000015     0.037867
PLUMED: 3 Waiting for data                              1000     0.003051     0.000003     0.000002     0.000013
PLUMED: 4 Calculating (forward loop)                    1000    63.459357     0.063459     0.054012     0.091577
PLUMED: 5 Applying (backward loop)                      1000     0.008520     0.000009     0.000005     0.000044
PLUMED: 6 Update                                        1000     0.043188     0.000043     0.000031     0.000080
BENCH:  
BENCH:  Kernel:      ../../src/lib/install/libplumedKernel.so
BENCH:  Input:       plumed.dat
BENCH:  Comparative: 0.941 +- 0.002
BENCH:                                                Cycles        Total      Average      Minimum      Maximum
BENCH:  A Initialization                                   1     0.216190     0.216190     0.216190     0.216190
BENCH:  B0 First step                                      1     0.058967     0.058967     0.058967     0.058967
BENCH:  B1 Warm-up                                       199    11.983512     0.060219     0.056412     0.102643
BENCH:  B2 Calculation part 1                            400    24.035510     0.060089     0.056539     0.113900
BENCH:  B3 Calculation part 2                            400    24.084369     0.060211     0.056866     0.097184
PLUMED:                                               Cycles        Total      Average      Minimum      Maximum
PLUMED:                                                    1    60.373083    60.373083    60.373083    60.373083
PLUMED: 1 Prepare dependencies                          1000     0.003351     0.000003     0.000001     0.000014
PLUMED: 2 Sharing data                                  1000     0.329323     0.000329     0.000015     0.032672
PLUMED: 3 Waiting for data                              1000     0.003078     0.000003     0.000001     0.000013
PLUMED: 4 Calculating (forward loop)                    1000    59.752459     0.059752     0.056310     0.083841
PLUMED: 5 Applying (backward loop)                      1000     0.008900     0.000009     0.000006     0.000034
PLUMED: 6 Update                                        1000     0.043015     0.000043     0.000032     0.000239

or

PLUMED:                                               Cycles        Total      Average      Minimum      Maximum
PLUMED:                                                    1    60.373083    60.373083    60.373083    60.373083
PLUMED: 1 Prepare dependencies                          1000     0.003351     0.000003     0.000001     0.000014
PLUMED: 2 Sharing data                                  1000     0.329323     0.000329     0.000015     0.032672
PLUMED: 3 Waiting for data                              1000     0.003078     0.000003     0.000001     0.000013
PLUMED: 4 Calculating (forward loop)                    1000    59.752459     0.059752     0.056310     0.083841
PLUMED: 5 Applying (backward loop)                      1000     0.008900     0.000009     0.000006     0.000034
PLUMED: 6 Update                                        1000     0.043015     0.000043     0.000032     0.000239

One way of extracting the timing from the ouput of the benchmark is: awk '/BENCH: Kernel: /,EOF' benchmark.out > times_benchmark.out


Table of Contents

Installation

pip install plumed-bench-pp

License

plumed-bench-pp is distributed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

plumed_bench_pp-0.0.4.tar.gz (26.2 kB view details)

Uploaded Source

Built Distribution

plumed_bench_pp-0.0.4-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file plumed_bench_pp-0.0.4.tar.gz.

File metadata

  • Download URL: plumed_bench_pp-0.0.4.tar.gz
  • Upload date:
  • Size: 26.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for plumed_bench_pp-0.0.4.tar.gz
Algorithm Hash digest
SHA256 73d28f9b00f9001161baa9ad889df325970db0ef7fa9f8bb0c48c785eaf562be
MD5 3a0250b5396e9078879c765bd45c2373
BLAKE2b-256 c8d936efdae779fada90444b7b8da9cf8e3db2b8bca2153c1f58b4c63cd45bdf

See more details on using hashes here.

File details

Details for the file plumed_bench_pp-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for plumed_bench_pp-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a2d4675fba6cee87570a80faee854ccd5ce808b7013a69d8de92621e9416a962
MD5 4be5142085c96da92a1a8961e9e91fcf
BLAKE2b-256 ecd6b418030748d40593a92aadc3782abb9eb11c7e1f73e6b0facb9fe52eed50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page