Skip to main content

Process mining for Python

Project description

# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is a product of the Fraunhofer Institute for Applied Information Technology.

## Documentation / API The full documentation of pm4py can be found at http://pm4py.org/

## First Example A very simple example, to whet your appetite:

import pm4py

if __name__ == “__main__”:

log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)

## Installation pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking: pip install -U pm4py

## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm * Optional requirements (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar

## Release Notes To track the incremental updates, please refer to the CHANGELOG file.

## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.

## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:

Berti, A., van Zelst, S.J., van der Aalst, W.M.P. (2019): Process Mining for Python (PM4Py): Bridging the Gap Between Process-and Data Science. In: Proceedings of the ICPM Demo Track 2019, co-located with 1st International Conference on Process Mining (ICPM 2019), Aachen, Germany, June 24-26, 2019. pp. 13-16 (2019). http://ceur-ws.org/Vol-2374/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pm4py-2.7.1.1.tar.gz (28.6 MB view details)

Uploaded Source

Built Distribution

pm4py-2.7.1.1-py3-none-any.whl (1.7 MB view details)

Uploaded Python 3

File details

Details for the file pm4py-2.7.1.1.tar.gz.

File metadata

  • Download URL: pm4py-2.7.1.1.tar.gz
  • Upload date:
  • Size: 28.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.28.2 setuptools/67.6.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.0

File hashes

Hashes for pm4py-2.7.1.1.tar.gz
Algorithm Hash digest
SHA256 de43494907bed31638ed071784f45b36c6a01dd688e21c487585311ea3100be7
MD5 c7f22da5a23e8fc5147dfbb97bcce6e9
BLAKE2b-256 95793835f816255407411a0fe5523040f2cd35fd7571ca25170782e170bb9662

See more details on using hashes here.

File details

Details for the file pm4py-2.7.1.1-py3-none-any.whl.

File metadata

  • Download URL: pm4py-2.7.1.1-py3-none-any.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.28.2 setuptools/67.6.0 requests-toolbelt/0.9.1 tqdm/4.65.0 CPython/3.9.0

File hashes

Hashes for pm4py-2.7.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 581e21c624a483b8ce04343e3df585c3d92d4baeab7c5ba61af8cc018ed8d6d3
MD5 723c2d4c72e4bfd5ebd32c476164975b
BLAKE2b-256 94f705d3a6a22b6baf817799cd8ff15ae4f77df50b636cc0d0590cf67811ba8e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page