Skip to main content

Process mining for Python

Project description

# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is a product of the Fraunhofer Institute for Applied Information Technology.

## Documentation / API The full documentation of pm4py can be found at https://pm4py.fit.fraunhofer.de

## First Example A very simple example, to whet your appetite:

import pm4py

if __name__ == “__main__”:

log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)

## Installation pm4py can be installed on Python 3.9.x / 3.10.x / 3.11.x / 3.12.x by invoking: pip install -U pm4py

pm4py is also running on older Python environments with different requirements sets, including: - Python 3.8 (3.8.10): third_party/old_python_deps/requirements_py38.txt

## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm * Optional requirements (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar, pygetwindow, pynput

## Release Notes To track the incremental updates, please refer to the CHANGELOG file.

## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.

## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:

Alessandro Berti, Sebastiaan van Zelst, Daniel Schuster. (2023). PM4Py: A process mining library for Python. Software Impacts, 17, 100556. [DOI](https://doi.org/10.1016/j.simpa.2023.100556) | [Article Link](https://www.sciencedirect.com/science/article/pii/S2665963823000933)

BiBTeX:

@article{pm4py, title = {PM4Py: A process mining library for Python}, journal = {Software Impacts}, volume = {17}, pages = {100556}, year = {2023}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2023.100556}, url = {https://www.sciencedirect.com/science/article/pii/S2665963823000933}, author = {Alessandro Berti and Sebastiaan van Zelst and Daniel Schuster}, }

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pm4py-2.7.10.3.tar.gz (874.8 kB view details)

Uploaded Source

Built Distribution

pm4py-2.7.10.3-py3-none-any.whl (1.9 MB view details)

Uploaded Python 3

File details

Details for the file pm4py-2.7.10.3.tar.gz.

File metadata

  • Download URL: pm4py-2.7.10.3.tar.gz
  • Upload date:
  • Size: 874.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.1

File hashes

Hashes for pm4py-2.7.10.3.tar.gz
Algorithm Hash digest
SHA256 395aa5f694a8bfc37ccc73eed8ea2414e89ef3921282f6db389d17164aa81f5f
MD5 c526bfa34c4bdfe1b3d23b2f198bff18
BLAKE2b-256 6093270dee3ed8be02b8fa3b95a8af4d35641b2a353a06b33a4c2b30f2bdfe83

See more details on using hashes here.

File details

Details for the file pm4py-2.7.10.3-py3-none-any.whl.

File metadata

  • Download URL: pm4py-2.7.10.3-py3-none-any.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.1

File hashes

Hashes for pm4py-2.7.10.3-py3-none-any.whl
Algorithm Hash digest
SHA256 151566028f667a75c0d962cbe15c78e1a8a1117bf8f5283d5172b8bf483b0197
MD5 89c19da03a1c61d59d828e5df2964a73
BLAKE2b-256 599e928dacd6eacb8e27322613bc24bb6404e256a752589c4daad26b45732036

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page