Skip to main content

Process mining for Python

Project description

# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is a product of the Fraunhofer Institute for Applied Information Technology.

## Documentation / API The full documentation of pm4py can be found at https://pm4py.fit.fraunhofer.de

## First Example A very simple example, to whet your appetite:

import pm4py

if __name__ == “__main__”:

log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)

## Installation pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking: pip install -U pm4py

## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm * Optional requirements (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar

## Release Notes To track the incremental updates, please refer to the CHANGELOG file.

## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.

## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:

Alessandro Berti, Sebastiaan van Zelst, Daniel Schuster. (2023). PM4Py: A process mining library for Python. Software Impacts, 17, 100556. [DOI](https://doi.org/10.1016/j.simpa.2023.100556) | [Article Link](https://www.sciencedirect.com/science/article/pii/S2665963823000933)

BiBTeX:

@article{pm4py, title = {PM4Py: A process mining library for Python}, journal = {Software Impacts}, volume = {17}, pages = {100556}, year = {2023}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2023.100556}, url = {https://www.sciencedirect.com/science/article/pii/S2665963823000933}, author = {Alessandro Berti and Sebastiaan van Zelst and Daniel Schuster}, }

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pm4py-2.7.5.1.tar.gz (726.0 kB view details)

Uploaded Source

Built Distribution

pm4py-2.7.5.1-py3-none-any.whl (1.7 MB view details)

Uploaded Python 3

File details

Details for the file pm4py-2.7.5.1.tar.gz.

File metadata

  • Download URL: pm4py-2.7.5.1.tar.gz
  • Upload date:
  • Size: 726.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.5.1.tar.gz
Algorithm Hash digest
SHA256 263fa466479448fd1091a41489139626694ae6824cf4c0ff8265e2b387d76bf0
MD5 c6a50b5c6311020b7492c69a5a0fd68e
BLAKE2b-256 d78c96b37a1c6909d07b3cae76dd045aec9a8f82e979bb8fc252064579ef6b2d

See more details on using hashes here.

File details

Details for the file pm4py-2.7.5.1-py3-none-any.whl.

File metadata

  • Download URL: pm4py-2.7.5.1-py3-none-any.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d20cf837f29c40d60a25aefcde2aeebd1cf4aabe08dc6fcf01e88d471302344e
MD5 177c18da73240648d30b3cca2b2061b1
BLAKE2b-256 8fee348dfb072ea195e952fd68d024d6c59c34565591aeede3c4a48ec8d1f57e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page