Skip to main content

Process mining for Python

Project description

# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is a product of the Fraunhofer Institute for Applied Information Technology.

## Documentation / API The full documentation of pm4py can be found at https://pm4py.fit.fraunhofer.de

## First Example A very simple example, to whet your appetite:

import pm4py

if __name__ == “__main__”:

log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)

## Installation pm4py can be installed on Python 3.8.x / 3.9.x / 3.10.x / 3.11.x by invoking: pip install -U pm4py

## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm * Optional requirements (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar

## Release Notes To track the incremental updates, please refer to the CHANGELOG file.

## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.

## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:

Alessandro Berti, Sebastiaan van Zelst, Daniel Schuster. (2023). PM4Py: A process mining library for Python. Software Impacts, 17, 100556. [DOI](https://doi.org/10.1016/j.simpa.2023.100556) | [Article Link](https://www.sciencedirect.com/science/article/pii/S2665963823000933)

BiBTeX:

@article{pm4py, title = {PM4Py: A process mining library for Python}, journal = {Software Impacts}, volume = {17}, pages = {100556}, year = {2023}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2023.100556}, url = {https://www.sciencedirect.com/science/article/pii/S2665963823000933}, author = {Alessandro Berti and Sebastiaan van Zelst and Daniel Schuster}, }

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pm4py-2.7.5.2.tar.gz (739.1 kB view details)

Uploaded Source

Built Distribution

pm4py-2.7.5.2-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file pm4py-2.7.5.2.tar.gz.

File metadata

  • Download URL: pm4py-2.7.5.2.tar.gz
  • Upload date:
  • Size: 739.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.5.2.tar.gz
Algorithm Hash digest
SHA256 7cf2bc0ec89db474ff815516f8ebc11b1c2effcbcaa844acb2da0201b52ec44e
MD5 e57e2aaf320c7e07d0ed73579634e688
BLAKE2b-256 3e7d833b84a4273435d92d06c35c61936a06902120924be3894552eccd2bdaac

See more details on using hashes here.

File details

Details for the file pm4py-2.7.5.2-py3-none-any.whl.

File metadata

  • Download URL: pm4py-2.7.5.2-py3-none-any.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3f15d1710fd65ef106bcac40ba2071acd23353f0af397b487ec127f7d6d6b2c4
MD5 7156a3e5d22c29f08864807d290e23d1
BLAKE2b-256 bb55acf5b852c52d9b57174bdaf4671349bbe5d66bbdf87763969e27c6e6df4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page