Skip to main content

Process mining for Python

Project description

# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is a product of the Fraunhofer Institute for Applied Information Technology.

## Documentation / API The full documentation of pm4py can be found at https://pm4py.fit.fraunhofer.de

## First Example A very simple example, to whet your appetite:

import pm4py

if __name__ == “__main__”:

log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)

## Installation pm4py can be installed on Python 3.9.x / 3.10.x / 3.11.x / 3.12.x by invoking: pip install -U pm4py

pm4py is also running on older Python environments with different requirements sets, including: - Python 3.8 (3.8.10): third_party/old_python_deps/requirements_py38.txt

## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, stringdist, tqdm * Optional requirements (not installed by default): scikit-learn, pyemd, pyvis, jsonschema, polars, openai, pywin32, python-dateutil, requests, workalendar

## Release Notes To track the incremental updates, please refer to the CHANGELOG file.

## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.

## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:

Alessandro Berti, Sebastiaan van Zelst, Daniel Schuster. (2023). PM4Py: A process mining library for Python. Software Impacts, 17, 100556. [DOI](https://doi.org/10.1016/j.simpa.2023.100556) | [Article Link](https://www.sciencedirect.com/science/article/pii/S2665963823000933)

BiBTeX:

@article{pm4py, title = {PM4Py: A process mining library for Python}, journal = {Software Impacts}, volume = {17}, pages = {100556}, year = {2023}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2023.100556}, url = {https://www.sciencedirect.com/science/article/pii/S2665963823000933}, author = {Alessandro Berti and Sebastiaan van Zelst and Daniel Schuster}, }

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pm4py-2.7.8.3.tar.gz (749.4 kB view details)

Uploaded Source

Built Distribution

pm4py-2.7.8.3-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file pm4py-2.7.8.3.tar.gz.

File metadata

  • Download URL: pm4py-2.7.8.3.tar.gz
  • Upload date:
  • Size: 749.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.8.3.tar.gz
Algorithm Hash digest
SHA256 fdfe20355425d69e164c7f71bcb59bb5bad39998101e8b8e54242f7cc49fe87a
MD5 4091dc9381872d6cbea60da6f6a883e7
BLAKE2b-256 0f15fb6aaff908a0d06c3ebce7b14b65705692a834f6d87d04b2f04feb8252b6

See more details on using hashes here.

File details

Details for the file pm4py-2.7.8.3-py3-none-any.whl.

File metadata

  • Download URL: pm4py-2.7.8.3-py3-none-any.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pm4py-2.7.8.3-py3-none-any.whl
Algorithm Hash digest
SHA256 05e36b55c1155df017d1c0f4e21999ac5eac4a5aeba2436ee6ae9a55f9de0061
MD5 c21151d18bf40ab84512d2305e3c93a5
BLAKE2b-256 289abf6305f49260d14ea21fa9dd8fea5a7defe4527b4d84f179c3db6bab7c41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page