Process mining for Python
Project description
# pm4py pm4py is a python library that supports (state-of-the-art) process mining algorithms in python. It is open source (licensed under GPL) and intended to be used in both academia and industry projects. pm4py is managed and developed by Process Intelligence Solutions (https://processintelligence.solutions/). pm4py was initially developed at the Fraunhofer Institute for Applied Information Technology FIT.
## Documentation / API The full documentation of pm4py can be found at https://processintelligence.solutions/
## First Example A very simple example, to whet your appetite:
import pm4py
- if __name__ == “__main__”:
log = pm4py.read_xes(‘<path-to-xes-log-file.xes>’) net, initial_marking, final_marking = pm4py.discover_petri_net_inductive(log) pm4py.view_petri_net(net, initial_marking, final_marking, format=”svg”)
## Installation pm4py can be installed on Python 3.9.x / 3.10.x / 3.11.x / 3.12.x by invoking: pip install -U pm4py
pm4py is also running on older Python environments with different requirements sets, including: - Python 3.8 (3.8.10): third_party/old_python_deps/requirements_py38.txt
## Requirements pm4py depends on some other Python packages, with different levels of importance: * Essential requirements: numpy, pandas, deprecation, networkx * Normal requirements (installed by default with the pm4py package, important for mainstream usage): graphviz, intervaltree, lxml, matplotlib, pydotplus, pytz, scipy, tqdm * Optional requirements (not installed by default): requests, pyvis, jsonschema, workalendar, pyarrow, scikit-learn, polars, openai, pyemd, pyaudio, pydub, pygame, pywin32, pygetwindow, pynput
## Release Notes To track the incremental updates, please refer to the CHANGELOG file.
## Third Party Dependencies As scientific library in the Python ecosystem, we rely on external libraries to offer our features. In the /third_party folder, we list all the licenses of our direct dependencies. Please check the /third_party/LICENSES_TRANSITIVE file to get a full list of all transitive dependencies and the corresponding license.
## Citing pm4py If you are using pm4py in your scientific work, please cite pm4py as follows:
Alessandro Berti, Sebastiaan van Zelst, Daniel Schuster. (2023). PM4Py: A process mining library for Python. Software Impacts, 17, 100556. [DOI](https://doi.org/10.1016/j.simpa.2023.100556) | [Article Link](https://www.sciencedirect.com/science/article/pii/S2665963823000933)
BiBTeX:
@article{pm4py, title = {PM4Py: A process mining library for Python}, journal = {Software Impacts}, volume = {17}, pages = {100556}, year = {2023}, issn = {2665-9638}, doi = {https://doi.org/10.1016/j.simpa.2023.100556}, url = {https://www.sciencedirect.com/science/article/pii/S2665963823000933}, author = {Alessandro Berti and Sebastiaan van Zelst and Daniel Schuster}, }
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for pm4pyminimal-2.7.11.13-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5e5aa190a812e6e109f20119055b9ea524de0ea0097b1450fc954a89c90486e |
|
MD5 | 0c775fd5402a2674f3051b888bfdfa48 |
|
BLAKE2b-256 | 17909bce7f4109d36779d34875643429c4e8dcba19fba04fc578aaacf92caa97 |