Skip to main content

Python bindings for Monte Carlo eXtreme photon transport simulator

Project description

PMCX - Python bindings for Monte Carlo eXtreme photon transport simulator

  • Copyright: (C) Matin Raayai Ardakani (2022-2023) <raayaiardakani.m at northeastern.edu>, Qianqian Fang (2019-2025) <q.fang at neu.edu>, Fan-Yu Yen (2023-2024) <yen.f at northeastern.edu>
  • License: GNU Public License V3 or later
  • Version: 0.6.2
  • URL: https://pypi.org/project/pmcx/
  • Github: https://github.com/fangq/mcx

Linux Python Module
MacOS Python Module
Windows Python Module

This module provides a Python binding for Monte Carlo eXtreme (MCX). For other binaries, including the standalone executable and the MATLAB bindings, see our website.

Monte Carlo eXtreme (MCX) is a fast photon transport simulation software for 3D heterogeneous turbid media. By taking advantage of the massively parallel threads and extremely low memory latency in a modern graphics processing unit (GPU), MCX is capable of performing Monte Carlo (MC) photon simulations at a blazing speed, typically hundreds to a thousand times faster than a fully optimized CPU-based MC implementation.

How to Install

Runtime Dependencies

  • NVIDIA GPU Driver: A CUDA-capable NVIDIA GPU and driver is required to run MCX. An up-to-date driver is recommended. The binary wheel distributed over pip runs on NVIDIA drivers with CUDA 10.1 support on Windows, CUDA 9.2 support on Linux, and CUDA 10.2 support on macOS, respectively. For more details on driver versions and their CUDA support, see the CUDA Release Notes. To download the latest driver for your system, see the NVIDIA Driver Download Page. You shouldn't need to have CUDA toolkit installed. MCX is built with the static CUDA runtime library.
  • Python: Python 3.6 and newer is required. Python 2 is not supported.
  • numpy: Used to pass/receive volumetric information to/from pmcx. To install, use either conda or pip package managers: pip install numpy or conda install numpy
  • (optional) jdata: Only needed to read/write JNIfTI output files. To install, use pip: pip install jdata on all operating systems; For Debian-based Linux distributions, you can also install to the system interpreter using apt-get: sudo apt-get install python3-jdata. See https://pypi.org/project/jdata/ for more details.
  • (optional) bjdata: Only needed to read/write BJData/UBJSON files. To install, run pip install bjdata on all operating systems; For Debian-based Linux distributions, you can also install to the system interpreter using apt-get: sudo apt-get install python3-bjdata. See https://pypi.org/project/bjdata/ for more details.
  • (optional) matplotlib: For plotting the results. To install, run either pip install matplotlib or conda install matplotlib

Build Instructions

Build Dependencies

  • Operating System: Windows and Linux are fully supported; For building MCX on macOS, OSX 10.13 (High Sierra) and older are highly recommended since 10.13 was the last version of macOS with NVIDIA CUDA support, and matching the CUDA compiler version with the C/C++ compiler shipped with Xcode is easier. Newer macOS versions can be used for building MCX, but need to have System Integrity Protection disabled prior to installing the CUDA toolkit due to the NVIDIA installer copying its payload under the /Developer directory under root.

  • NVIDIA CUDA Toolkit: CUDA 7.5 or newer is required. On macOS, 10.2 is the last available CUDA version. For details on how to install CUDA, see the CUDA Download Page. The NVIDIA GPU driver of the target system must support the selected CUDA toolkit.

  • Python Interpreter: Python 3.6 or above. The pip Python package manager and the wheel package (available via pip) are not required but recommended.

  • C/C++ Compiler: CUDA Toolkit supports only the following compilers:

    • GNU GCC for Linux-based distributions.
    • Microsoft Visual Studio C/C++ Compiler for Windows.
    • Apple Clang for macOS, available via Xcode. The last Xcode version supported by CUDA 10.2 is 10.3. If using an OSX version higher than 10.15 it can be downloaded and installed from Apple's Developer Website with an Apple ID. After installation, select the proper Xcode version from the commandline, and set the SDKROOT environment variable:
      sudo xcode-select -s /Applications/Xcode_10.3.app/Contents/Developer/
      export SDKROOT=/Applications/Xcode_10.3.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
      

    Refer to each OS's online documentations for more in-depth information on how to install these compilers. Note that the version of the C/C++ compiler used must be supported by the CUDA toolkit version. If not, compilation will fail with an error notifying you of this problem. See the CUDA Installation Guides for more details.

  • OpenMP: The installed C/C++ Compiler should have support for OpenMP. GCC and Microsoft Visual Studio compiler support OpenMP out of the box. Apple Clang, however, requires manual installation of OpenMP libraries for Apple Clang. The easiest way to do this is via the Brew package manager, preferably after selecting the correct Xcode version:

    brew install libomp
    brew link --force libomp
    
  • CMake: CMake version 3.15 and later is required. Refer to the CMake website for more information on how to download. CMake is also widely available on package managers across all operating systems. Additionally, on Windows, make sure Visual Studio's C++ CMake tools for Windows is also installed by selecting its option during installation.

Build Steps

  1. Ensure that cmake, nvcc (NVIDIA CUDA Compiler) and the C/C++ compiler are all located over your PATH. This can be queried via echo $env:PATH on Windows or echo $PATH on Linux. If not, locate them and add their folder to the PATH.

  2. Clone the repository and switch to the pmcx/ folder:

git clone --recursive https://github.com/fangq/mcx.git
cd mcx/pmcx
  1. One can run python3 setup.py install or python3 -m pip install . to both locally build and install the module

  2. If one only wants to locally build the module, one should run python3 -m pip wheel .

  3. If the binary module is successfully built locally, you should see a binary wheel file pmcx-X.X.X-cpXX-cpXX-*.whl stored inside the mcx/pmcx folder. You can install this wheel package using python3 -m pip install --force-reinstall pmcx-*.whl to force installing this locally compiled pmcx module and overwrite any previously installed versions.

How to use

The PMCX module is easy to use. You can use the pmcx.gpuinfo() function to first verify if you have NVIDIA/CUDA compatible GPUs installed; if there are NVIDIA GPUs detected, you can then call the mcxlab() function, or run(), to launch a photon simulation.

A simulation can be defined conveniently in two approaches - a one-liner and a two-liner:

  • For the one-liner, one simply pass on each MCX simulation setting as positional argument. The supported setting names are compatible to nearly all the input fields for the MATLAB version of MCX - MCXLAB)
import pmcx
import numpy as np
import matplotlib.pyplot as plt

res = pmcx.run(nphoton=1000000, vol=np.ones([60, 60, 60], dtype='uint8'), tstart=0, tend=5e-9, 
               tstep=5e-9, srcpos=[30,30,0], srcdir=[0,0,1], prop=np.array([[0, 0, 1, 1], [0.005, 1, 0.01, 1.37]]))
res['flux'].shape

plt.imshow(np.log10(res['flux'][30,:, :]))
plt.show()
  • Alternatively, one can also define a Python dict object containing each setting as a key, and pass on the dict object to pmcx.run(), or preferably, pmcx.mcxlab()
import pmcx
import numpy as np
cfg = {'nphoton': 1000000, 'vol':np.ones([60,60,60],dtype='uint8'), 'tstart':0, 'tend':5e-9, 'tstep':5e-9,
       'srcpos': [30,30,0], 'srcdir':[0,0,1], 'prop':[[0,0,1,1],[0.005,1,0.01,1.37]]}
res = pmcx.run(cfg)      # pmcx.run returns detected photon data as a concatenated 2D array res['detp'], same for res['traj']
# or alternatively/preferably
res = pmcx.mcxlab(cfg)   # pmcx.mcxlab calls pmcx.run, and postprocess res['detp'] and res['traj'] raw data into dict form

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pmcx-0.6.2-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pmcx-0.6.2-pp310-pypy310_pp73-win_amd64.whl (4.6 MB view details)

Uploaded PyPyWindows x86-64

pmcx-0.6.2-pp310-pypy310_pp73-macosx_10_20_x86_64.whl (5.1 MB view details)

Uploaded PyPymacOS 10.20+ x86-64

pmcx-0.6.2-pp39-pypy39_pp73-win_amd64.whl (4.6 MB view details)

Uploaded PyPyWindows x86-64

pmcx-0.6.2-pp39-pypy39_pp73-macosx_10_20_x86_64.whl (5.1 MB view details)

Uploaded PyPymacOS 10.20+ x86-64

pmcx-0.6.2-pp38-pypy38_pp73-win_amd64.whl (4.6 MB view details)

Uploaded PyPyWindows x86-64

pmcx-0.6.2-pp38-pypy38_pp73-macosx_10_20_x86_64.whl (5.1 MB view details)

Uploaded PyPymacOS 10.20+ x86-64

pmcx-0.6.2-pp37-pypy37_pp73-win_amd64.whl (4.6 MB view details)

Uploaded PyPyWindows x86-64

pmcx-0.6.2-pp37-pypy37_pp73-macosx_10_20_x86_64.whl (5.1 MB view details)

Uploaded PyPymacOS 10.20+ x86-64

pmcx-0.6.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp313-cp313-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.13Windows x86-64

pmcx-0.6.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp313-cp313-macosx_10_20_universal2.whl (5.1 MB view details)

Uploaded CPython 3.13macOS 10.20+ universal2 (ARM64, x86-64)

pmcx-0.6.2-cp312-cp312-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.12Windows x86-64

pmcx-0.6.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp312-cp312-macosx_10_20_universal2.whl (5.1 MB view details)

Uploaded CPython 3.12macOS 10.20+ universal2 (ARM64, x86-64)

pmcx-0.6.2-cp311-cp311-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.11Windows x86-64

pmcx-0.6.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp311-cp311-macosx_10_20_universal2.whl (5.1 MB view details)

Uploaded CPython 3.11macOS 10.20+ universal2 (ARM64, x86-64)

pmcx-0.6.2-cp310-cp310-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.10Windows x86-64

pmcx-0.6.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp310-cp310-macosx_13_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

pmcx-0.6.2-cp39-cp39-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.9Windows x86-64

pmcx-0.6.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp39-cp39-macosx_13_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

pmcx-0.6.2-cp38-cp38-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.8Windows x86-64

pmcx-0.6.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pmcx-0.6.2-cp38-cp38-macosx_13_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8macOS 13.0+ x86-64

pmcx-0.6.2-cp37-cp37m-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

pmcx-0.6.2-cp37-cp37m-macosx_11_0_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7mmacOS 11.0+ x86-64

pmcx-0.6.2-cp36-cp36m-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.6mWindows x86-64

pmcx-0.6.2-cp36-cp36m-macosx_10_20_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6mmacOS 10.20+ x86-64

File details

Details for the file pmcx-0.6.2-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 068a2109a131a6e4f0c26a4fdccd7466d91ecaf1164eaf1232a3b773ebe05945
MD5 8b0188773d6558ecbe8ed3717322f1e5
BLAKE2b-256 2c9f5b2236d1db2d1935048edad97464d588e87f59cd12e0effb627fc53e6cfc

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 890b28f63eb278cc127559bed08601aa0551e28dd1a480a725e08e332fde9b22
MD5 ccadaa6d634b8692062fcfa63de8aafa
BLAKE2b-256 daab801ea3a0e79fa4e9dad89dad721ec8ee893b4ae175b8644e0206d562f2e8

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp310-pypy310_pp73-macosx_10_20_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp310-pypy310_pp73-macosx_10_20_x86_64.whl
Algorithm Hash digest
SHA256 6a2320db2da090e5d6a1efd71f16e9ca15c980a12aee067516049b1dad7a1894
MD5 e9799456d44368accdfe498d9a178c3f
BLAKE2b-256 12880940978a3e02aa54d8dfe09d55b15515114882ce3982d99ea00346400840

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 75a090780c3e4b1512eca74065cf0c813d00cf9edc487df2213c33a68654a11a
MD5 0016cd3d2352c98272fb61184ff1224c
BLAKE2b-256 e6dcc7554eae7cfa533790e5128e8efdd8a2e1bb909c339f5fc700db73b87acf

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp39-pypy39_pp73-macosx_10_20_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp39-pypy39_pp73-macosx_10_20_x86_64.whl
Algorithm Hash digest
SHA256 f6d567c07ea9b98ab0572219d59593899c79949a9f1efbf767a334bcd9c61418
MD5 546f79a30fa7f53b7b27c193f6c1bbc7
BLAKE2b-256 acf3c9108b393f0e07dc90b0becf4c19a392e1536f5ef70e5efbe8c5a9e3bec4

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 45e801e494b12a0415879ceb290a199e368bf310b2de246a6b89effb0b72cb65
MD5 8d571245d907b2f76b4af64d523e0366
BLAKE2b-256 63db12c6d11fcd64b0461fde1c7ce8e88f9cb7406e4af2467d0c5ab0ae094927

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp38-pypy38_pp73-macosx_10_20_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp38-pypy38_pp73-macosx_10_20_x86_64.whl
Algorithm Hash digest
SHA256 7827fb3d906eb59e569f8cdc2488e7967afa3cd7798c6c93ec10e6ef70b6a900
MD5 3dab7992d4607cf533dfcd0280707bb3
BLAKE2b-256 7c9e1ed5a32fdde889d506bacda515fa6cd336e3812d6cbc380175e2b0d7ddb7

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 be8713fee5c77438433a564303c3fa55cb87109adc53770dfd3086c33161f717
MD5 98eebaa053219f0b841f4c1e36ffb7c5
BLAKE2b-256 bbf48d790976d5c64197ffb2ef5ad8df4d38b76798afa8214ed3eb9ffff50b00

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-pp37-pypy37_pp73-macosx_10_20_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-pp37-pypy37_pp73-macosx_10_20_x86_64.whl
Algorithm Hash digest
SHA256 464ed7e6ca56b696bb9ae96352fad0fda4a4030061765b68640a1307333c859b
MD5 f4d090dd66c0a671f8a28735a6c8050b
BLAKE2b-256 c6902daba40e9a6488d6d33ddc7d04dbc8f2f8892e881355ed38fe5c5e9fd60b

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b0dde159e837e9c158b93d320ccc5715317ac2ec05c4c825da6eb870e712d786
MD5 0325af41ba4110b2107d32d6131f1530
BLAKE2b-256 142604bc34bcc564354fd75d5c408cbda738b3c305c8fe87a91b27b710947e8f

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b3cd3d07f1fb41e4a8cf18f4c5cc76bd70a875f44abaf65fdda65910744be8b7
MD5 d62cee9c6ac27baf697799fa3cf526ca
BLAKE2b-256 aef63cebb0d318d40e78dc806b1662d8a4eedcb81f4e32d5296e09cf42c43985

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 75d746e6aad899f7da69bc0d9951773a1be94bc0e246e569fa3a99ff0634af09
MD5 6802ef51b0587c76ad6652ee0ca6d8c6
BLAKE2b-256 907657c0619f25a1cd2127f9488283f5ed6c902c28117946aad9c2f2e909e5b6

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3dbd0f090350d6c6def88d6972f5f95dcb1bd5b72e9d65492177e73c1a531d0e
MD5 a16aa967a3ef37b6a490e17bde0ce2e1
BLAKE2b-256 f81188f9f855509514948a5e6502d18edfe5d12e1aee32d34c75806de36d645d

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 6eec38c8fac0002f983bfca4f19adfbc204aa03ce27e714e004f82888a9048de
MD5 e9ca5a5eccb731982036fb5d19233842
BLAKE2b-256 777c4cde6905bebb06ebb46e2d70fea73f8d365a9f213106dd781e9a7bc062f2

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp313-cp313-macosx_10_20_universal2.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp313-cp313-macosx_10_20_universal2.whl
Algorithm Hash digest
SHA256 2dd9b2469bc225d0c361ebaa6e5f564e50917ab37ccd1ff0b58d00e31b6f5dd2
MD5 811e0b570c7ca786a05d5ef60b4f092b
BLAKE2b-256 31bfc0d8abed91e673c7b5b03f738444c5a09cf301ae35a335ee514f733564e0

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c69ee9ad64f785aff0decb20657d6c72e3950faec4602523447f4391580d35dc
MD5 0fa71e001d82620f6f352b70e1c8d9b0
BLAKE2b-256 6c70eafb45066fa31beddff05ccfb4c69b2e9c649535174dbaaec66745679a3a

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 a96bf42df65ee67fe70fafaba9f590252a4b79f952d55924b4f7f75b76a3528e
MD5 ebc60662e5f8d4db340dc4b441fb789d
BLAKE2b-256 592012e7f2d0b7f6506c64e46f31337b38af4677ae490467ea480d1f2813955e

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp312-cp312-macosx_10_20_universal2.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp312-cp312-macosx_10_20_universal2.whl
Algorithm Hash digest
SHA256 64721ac76150707a151a11b98ba6168970ed6aca162bb5298faa0657f7297dfd
MD5 515cd58b8fef1d1178fd5fec513e5eb8
BLAKE2b-256 28837a0686df3d65a7ed36d2e185c8043870ecc0ad8608f559401ee5cfa84b17

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4d5bf8328092d1f5dda3d5d0c1b90bc1ab0f1da193ddd2e038e97bc5acf7c84f
MD5 b9cfe1cb5658a7315620d185eda7b367
BLAKE2b-256 6a5182ef91d93d27293e68242baa08673a6d8d411ff62370537d82b42560821a

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 6c3413217928dd95f917d663f9b1bf1d50782037da41698c66239ee543cd74c1
MD5 dcb919f696b79e3d1f5dde9724c58cfc
BLAKE2b-256 4692dd792932e8da901fa4141f80c29e3ff08e49fb117879131cb6357ea1ec72

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp311-cp311-macosx_10_20_universal2.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp311-cp311-macosx_10_20_universal2.whl
Algorithm Hash digest
SHA256 90ce0f69752380e838d5d9b61351091a6b4a655fa390ec53da28e5daca37fb54
MD5 77419f96a297cc2f828ec526cbf8463e
BLAKE2b-256 79500020e24def36db60686da8623bd0e8003c3f51408d5dd55e1e5163eaa869

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e7fdf3e78b437f012d99c6f3e6c046840bc419a048d30c45ce64e41d7bfa4bea
MD5 1bc240ab19751e13b8fbac428b9d7d91
BLAKE2b-256 9fe1f4c41a6cff7d9c282858dba37a42aad9566a95a70777af789ec0bc0296ed

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 00d83790c7681370f25bff9dc9541889970f47a0837320a5522e737861766b40
MD5 4f1598cae9f2e3c1518b2f2b33c02e58
BLAKE2b-256 5331418fbb908ecc22ee46c9568507b68ea73ff066c0020192e674c53a498e17

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2253affcc9028be854494bc939e67d358adcfc4cec7c2fc903733c053badf403
MD5 2a61c6c8a4b0d415226eacb6c1ed0533
BLAKE2b-256 15d421fcf1d5fe07956150f2354e3548dd662a4e3a214feab555fa40fdc44eeb

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5e935129471f4d3aef98c24a5a83412adf280821846016e5c47bcdb546045c75
MD5 94045d2e2020d554b316a5822fdc6bbe
BLAKE2b-256 ea87841a4cd92e36c951bb611b602a722e1d3c05b5c7307e7afad10faaf66fc0

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1e12ab027169875c231e03e2ed61980b2388071e2e4e295f7fb687cab6e725bf
MD5 112bc99161b5e699e1909da1aa3bb597
BLAKE2b-256 b930f18908cf6329667fa7b9f5fb080a76281605ff79b12449d7b392a8dc8bcc

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp39-cp39-macosx_13_0_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.9, macOS 13.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1c2b17dcc785e105e44f455cebea8df6502fadd8ef66c964134f500d98518e73
MD5 15ce6e00f5f0311d3e573aabd81abb63
BLAKE2b-256 5d7179d823b35d340bf29229f67708051cddc886d1ca537a89fba2577b95b7a6

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 82a50adea50ec3b919b851b65dab41043ebcd68260672bad18932cfc799041a8
MD5 45fecfaa474b617b14a9fa0aa243f357
BLAKE2b-256 67a788638df07bb9f2eac4ca81834ab59e2ad96682ab98184e283d07ff4d06ee

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2adec51045600721e6f882bb271ddd620f5209b4334d812c8a6a620e3e87f6ba
MD5 adee50fe9140677a2f753adc0114c098
BLAKE2b-256 1bd0d5554e7f8534e06aa224f8f895b4b8eddcde0d1e58710e7c51aee8f6bfe8

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp38-cp38-macosx_13_0_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.8, macOS 13.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c53770499613a7cb2f5515f583123d15529e3e91f2cb1c9b383878c6e6434a69
MD5 3d355182ecd96899e7a0eaf61be17ba9
BLAKE2b-256 2c62519cda46d741c7745e7a59be0db8e60fa58181cfd99adc30045bb4fa8112

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ec47c60cf1090ac717610e05b183959338e907c544568389168465083bdef5d3
MD5 c16913504cc0415dc23561b5765e9370
BLAKE2b-256 a4c612715c9cece5aaf3f4e91350ea7eb6ef0c8c76771635830ec3c59d3ff725

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 e797fb1b948e583c08cf68ada56cf19b6d6cd4aa5a15e07318e22a952b3962c8
MD5 abc28b3fb2de1379629ef580ffdb4ac8
BLAKE2b-256 678027fb430e25e0c8374d43cd0ce052c25862bbf1c250ad2e43430114679ca2

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pmcx-0.6.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcx-0.6.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 782f73153991db237ef2e2da4ceed45be471b250b5d2052bb8f6b3857dc6ca35
MD5 9abd40ec17e2c01e87a32c2914f68743
BLAKE2b-256 cf5b6fa9e95e3027a1163f04bf4bf666c649562828cbdf9df06b25a359068834

See more details on using hashes here.

File details

Details for the file pmcx-0.6.2-cp36-cp36m-macosx_10_20_x86_64.whl.

File metadata

File hashes

Hashes for pmcx-0.6.2-cp36-cp36m-macosx_10_20_x86_64.whl
Algorithm Hash digest
SHA256 26fd36692917d287a2717eafa6b7a9d16d579c0087b137a2a1b50395fe02871d
MD5 5f6fbf17adba60397e7ec9d98dd271b3
BLAKE2b-256 84560f595b104622eb40971afa3e8a7db94c9a1e7f465e940ab3d92a99068725

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page