Skip to main content

pnnx is an open standard for PyTorch model interoperability.

Project description

pnnx

python wrapper of pnnx, only support python 3.7+ now.

Install from pip

pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:

pip install pnnx

Build & Install from source

Prerequisites

On Unix (Linux, OS X)

  • A compiler with C++14 support
  • CMake >= 3.4

On Mac

  • A compiler with C++14 support
  • CMake >= 3.4

On Windows

  • Visual Studio 2015 or higher
  • CMake >= 3.4

Build & install

  1. clone ncnn.
git clone https://github.com/Tencent/ncnn.git
  1. install pytorch

install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:

conda install pytorch
  1. install
cd /pathto/ncnntools/pnnx/python
python setup.py install

Note: If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:

export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc" 

To do these, you must install Torchvision and Protobuf first.

Tests

cd /pathto/ncnn/tools/pnnx/python
pytest tests

Usage

  1. export model to pnnx
import torch
import torchvision.models as models
import pnnx

net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when torch tracing raises error
# opt_net = pnnx.export(net, "resnet18.pt", x, check_trace=False)
opt_net = pnnx.export(net, "resnet18.pt", x)
  1. convert existing model to pnnx
import torch
import pnnx

x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)

API Reference

  1. pnnx.export

model (torch.nn.Model): model to be exported.

ptpath (str): the torchscript name.

inputs (torch.Tensor of list of torch.Tensor) expected inputs of the model.

inputs2 (torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.

input_shapes (Optional, list of int or list of list with int type inside) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.

input_types (Optional, str or list of str) types of model inputs, it should have the same length with input_shapes. for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.

typename torch type
f32 torch.float32 or torch.float
f64 torch.float64 or torch.double
f16 torch.float16 or torch.half
u8 torch.uint8
i8 torch.int8
i16 torch.int16 or torch.short
i32 torch.int32 or torch.int
i64 torch.int64 or torch.long
c32 torch.complex32
c64 torch.complex64
c128 torch.complex128

input_shapes2 (Optional, list of int or list of list with int type inside) shapes of alternative model inputs, the format is identical to input_shapes. Usually, it is used with input_shapes to resolve dynamic shape (-1) in model graph.

input_types2 (Optional, str or list of str) types of alternative model inputs.

device (Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.

customop (Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators. For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or ["/home/nihui/.cache/torch_extensions/fused/fused.so",...].

moduleop (Optional, str or list of str) list of modules to keep as one big operator. for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].

optlevel (Optional, int, default=2) graph optimization level

option optimization level
0 do not apply optimization
1 do not apply optimization
2 optimization more for inference

pnnxparam (Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.

pnnxbin (Optional, str, default="*.pnnx.bin"): PNNX model weight.

pnnxpy (Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code.

pnnxonnx (Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.

ncnnparam (Optional, str, default="*.ncnn.param"): ncnn graph definition.

ncnnbin (Optional, str, default="*.ncnn.bin"): ncnn model weight.

ncnnpy (Optional, str, default="*_ncnn.py"): pyncnn script for inference.

  1. pnnx.convert

ptpath (str): torchscript model to be converted.

Other parameters are consistent with pnnx.export

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pnnx-20240819-py3-none-win_amd64.whl (16.6 MB view details)

Uploaded Python 3 Windows x86-64

pnnx-20240819-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (22.6 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

pnnx-20240819-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (20.2 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

pnnx-20240819-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl (45.1 MB view details)

Uploaded Python 3 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pnnx-20240819-py3-none-win_amd64.whl.

File metadata

  • Download URL: pnnx-20240819-py3-none-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pnnx-20240819-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 4c30c0d1165a9e7d98f21c245a6892a28dc4d36d2510f3770dba86bbbcc3b86d
MD5 191b979bed7363cdd500ceb80c648223
BLAKE2b-256 5831b886a45868747312d02464a349f950139b353ad365058e332e086251b0c5

See more details on using hashes here.

File details

Details for the file pnnx-20240819-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pnnx-20240819-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b6ed203aaf90b72542565c4b09f7986345e90d4b93b2eff715cae3d908fc992f
MD5 ac02f1a3b42de4776125dcfd6dc1ca1e
BLAKE2b-256 37e82e74b65a9130994e0d514f53897ac5f50618c815c5b524e57a3f78b13ec6

See more details on using hashes here.

File details

Details for the file pnnx-20240819-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pnnx-20240819-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 bc02e5a329d0841df078c243ed30ec31e497dceb5fbaaaad7299687f84737f3c
MD5 a9aef11ad45fb45bd9369f7736f06f0e
BLAKE2b-256 c0db029db3a16265c516190356ef0cba1c6687dca369782e48cb655b27af6773

See more details on using hashes here.

File details

Details for the file pnnx-20240819-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pnnx-20240819-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d59d5747c342f8d9f0f329358efeafe8f06f5a0b2af261a06e42722d5bf61950
MD5 b60571ee9109429d22a2b79c70e8f54f
BLAKE2b-256 9d9910e2449baef3979c8ac8299215b2d0b1fe756ae0865dc84e9584d7359f9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page