Skip to main content

pnnx is an open standard for PyTorch model interoperability.

Project description

pnnx

python wrapper of pnnx, only support python 3.7+ now.

Install from pip

pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:

pip install pnnx

Build & Install from source

Prerequisites

On Unix (Linux, OS X)

  • A compiler with C++14 support
  • CMake >= 3.4

On Mac

  • A compiler with C++14 support
  • CMake >= 3.4

On Windows

  • Visual Studio 2015 or higher
  • CMake >= 3.4

Build & install

  1. clone ncnn.
git clone https://github.com/Tencent/ncnn.git
  1. install pytorch

install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:

conda install pytorch
  1. install
cd /pathto/ncnntools/pnnx/python
python setup.py install

Note: If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:

export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc" 

To do these, you must install Torchvision and Protobuf first.

Tests

cd /pathto/ncnn/tools/pnnx/python
pytest tests

Usage

  1. export model to pnnx
import torch
import torchvision.models as models
import pnnx

net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when torch tracing raises error
# opt_net = pnnx.export(net, "resnet18.pt", x, check_trace=False)
opt_net = pnnx.export(net, "resnet18.pt", x)
  1. convert existing model to pnnx
import torch
import pnnx

x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)

API Reference

  1. pnnx.export

model (torch.nn.Model): model to be exported.

ptpath (str): the torchscript name.

inputs (torch.Tensor of list of torch.Tensor) expected inputs of the model.

inputs2 (torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.

input_shapes (Optional, list of int or list of list with int type inside) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.

input_types (Optional, str or list of str) types of model inputs, it should have the same length with input_shapes. for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.

typename torch type
f32 torch.float32 or torch.float
f64 torch.float64 or torch.double
f16 torch.float16 or torch.half
u8 torch.uint8
i8 torch.int8
i16 torch.int16 or torch.short
i32 torch.int32 or torch.int
i64 torch.int64 or torch.long
c32 torch.complex32
c64 torch.complex64
c128 torch.complex128

input_shapes2 (Optional, list of int or list of list with int type inside) shapes of alternative model inputs, the format is identical to input_shapes. Usually, it is used with input_shapes to resolve dynamic shape (-1) in model graph.

input_types2 (Optional, str or list of str) types of alternative model inputs.

device (Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.

customop (Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators. For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or ["/home/nihui/.cache/torch_extensions/fused/fused.so",...].

moduleop (Optional, str or list of str) list of modules to keep as one big operator. for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].

optlevel (Optional, int, default=2) graph optimization level

option optimization level
0 do not apply optimization
1 do not apply optimization
2 optimization more for inference

pnnxparam (Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.

pnnxbin (Optional, str, default="*.pnnx.bin"): PNNX model weight.

pnnxpy (Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code.

pnnxonnx (Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.

ncnnparam (Optional, str, default="*.ncnn.param"): ncnn graph definition.

ncnnbin (Optional, str, default="*.ncnn.bin"): ncnn model weight.

ncnnpy (Optional, str, default="*_ncnn.py"): pyncnn script for inference.

  1. pnnx.convert

ptpath (str): torchscript model to be converted.

Other parameters are consistent with pnnx.export

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pnnx-20240205-py3-none-win_amd64.whl (13.0 MB view details)

Uploaded Python 3 Windows x86-64

pnnx-20240205-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (18.4 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

pnnx-20240205-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl (36.7 MB view details)

Uploaded Python 3 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pnnx-20240205-py3-none-win_amd64.whl.

File metadata

  • Download URL: pnnx-20240205-py3-none-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for pnnx-20240205-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 782aeac8c3dd192e1aa8bbcde1e43fde498fd73fd606ba65948f2803caa15d4f
MD5 19936d6488bace166b8cee4fc1aa450c
BLAKE2b-256 ed780a2140164cd99c7ffba0ab567190c46e6db6c81ab0005b6a8ba65ad497ae

See more details on using hashes here.

File details

Details for the file pnnx-20240205-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pnnx-20240205-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3524dcbdad22d9109c30808c4f901efcb8bedfe5db36af9c85db506a13e9b492
MD5 f459200d9839025d2068d99e9eb48809
BLAKE2b-256 0d51591e3d5e89f52e41070da3aebf6e50c79d61ca9ef023bedf917559edb9c4

See more details on using hashes here.

File details

Details for the file pnnx-20240205-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pnnx-20240205-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a22225eceaf0a35e6058282793b8a003b09635eeefe5a575fa6880582eda6a40
MD5 86f0d7baf2c4ae66f2da2674c36040d7
BLAKE2b-256 6225671612e432901262f18683a6a22fefd240829b8d91168fd03692bb525cd1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page