Skip to main content

pnnx is an open standard for PyTorch model interoperability.

Project description

pnnx

python wrapper of pnnx, only support python 3.7+ now.

Install from pip

pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:

pip install pnnx

Build & Install from source

Prerequisites

On Unix (Linux, OS X)

  • A compiler with C++14 support
  • CMake >= 3.4

On Mac

  • A compiler with C++14 support
  • CMake >= 3.4

On Windows

  • Visual Studio 2015 or higher
  • CMake >= 3.4

Build & install

  1. clone ncnn.
git clone https://github.com/Tencent/ncnn.git
  1. install pytorch

install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:

conda install pytorch
  1. install
cd /pathto/ncnntools/pnnx/python
python setup.py install

Note: If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:

export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc" 

To do these, you must install Torchvision and Protobuf first.

Tests

cd /pathto/ncnn/tools/pnnx/python
pytest tests

Usage

  1. export model to pnnx
import torch
import torchvision.models as models
import pnnx

net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when torch tracing raises error
# opt_net = pnnx.export(net, "resnet18.pt", x, check_trace=False)
opt_net = pnnx.export(net, "resnet18.pt", x)
  1. convert existing model to pnnx
import torch
import pnnx

x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)

API Reference

  1. pnnx.export

model (torch.nn.Model): model to be exported.

ptpath (str): the torchscript name.

inputs (torch.Tensor of list of torch.Tensor) expected inputs of the model.

inputs2 (torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.

input_shapes (Optional, list of int or list of list with int type inside) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.

input_types (Optional, str or list of str) types of model inputs, it should have the same length with input_shapes. for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.

typename torch type
f32 torch.float32 or torch.float
f64 torch.float64 or torch.double
f16 torch.float16 or torch.half
u8 torch.uint8
i8 torch.int8
i16 torch.int16 or torch.short
i32 torch.int32 or torch.int
i64 torch.int64 or torch.long
c32 torch.complex32
c64 torch.complex64
c128 torch.complex128

input_shapes2 (Optional, list of int or list of list with int type inside) shapes of alternative model inputs, the format is identical to input_shapes. Usually, it is used with input_shapes to resolve dynamic shape (-1) in model graph.

input_types2 (Optional, str or list of str) types of alternative model inputs.

device (Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.

customop (Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators. For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or ["/home/nihui/.cache/torch_extensions/fused/fused.so",...].

moduleop (Optional, str or list of str) list of modules to keep as one big operator. for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].

optlevel (Optional, int, default=2) graph optimization level

option optimization level
0 do not apply optimization
1 do not apply optimization
2 optimization more for inference

pnnxparam (Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.

pnnxbin (Optional, str, default="*.pnnx.bin"): PNNX model weight.

pnnxpy (Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code.

pnnxonnx (Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.

ncnnparam (Optional, str, default="*.ncnn.param"): ncnn graph definition.

ncnnbin (Optional, str, default="*.ncnn.bin"): ncnn model weight.

ncnnpy (Optional, str, default="*_ncnn.py"): pyncnn script for inference.

  1. pnnx.convert

ptpath (str): torchscript model to be converted.

Other parameters are consistent with pnnx.export

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pnnx-20240226-py3-none-win_amd64.whl (13.0 MB view details)

Uploaded Python 3 Windows x86-64

pnnx-20240226-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (18.4 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

pnnx-20240226-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (16.9 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

pnnx-20240226-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl (36.9 MB view details)

Uploaded Python 3 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pnnx-20240226-py3-none-win_amd64.whl.

File metadata

  • Download URL: pnnx-20240226-py3-none-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pnnx-20240226-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 62f46c1e665173a823f3aa106d85b08b4d08b72b8251a56a6480417b852627a7
MD5 744d99e771959edd8d3eb2caffdedbd9
BLAKE2b-256 2e6e77025ad004e70883a02fe4aa7fb566086516ded5a2ce693a32881b8dd70c

See more details on using hashes here.

File details

Details for the file pnnx-20240226-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pnnx-20240226-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 bf10624dbae42f628713213f10dd32395493149beb0a1231baea8de513bc277c
MD5 0eff5ed8257c3daed88836927e82c17c
BLAKE2b-256 63596eff9e0ec7f8d3e43f0365856cd58a52e33b05beb6abc42c93b8ee2b158d

See more details on using hashes here.

File details

Details for the file pnnx-20240226-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pnnx-20240226-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 6a1981d026845c4555b2e14cffcb4c54dbb0aa72945966616ae3e6e1f593866d
MD5 ef1ca9d0314ed811a2f2d144ee81d90d
BLAKE2b-256 61d2a816d380c942a0ee9c4919dfebecdc1061fb15f0d68bf7749d0fa7169faf

See more details on using hashes here.

File details

Details for the file pnnx-20240226-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pnnx-20240226-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1197798c7b55974cbcdeaaef3dd028d114815f15f713c4747c5db00aa5e617f
MD5 25bf409598cbe4b20346039b8614adb4
BLAKE2b-256 a690e08cbfe7cfdedcfac9c3008e3a1f63756758af536320fd2b7d21380f22df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page