Skip to main content

pnnx is an open standard for PyTorch model interoperability.

Project description

pnnx

python wrapper of pnnx, only support python 3.7+ now.

Install from pip

pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:

pip install pnnx

Build & Install from source

Prerequisites

On Unix (Linux, OS X)

  • A compiler with C++14 support
  • CMake >= 3.4

On Mac

  • A compiler with C++14 support
  • CMake >= 3.4

On Windows

  • Visual Studio 2015 or higher
  • CMake >= 3.4

Build & install

  1. clone ncnn.
git clone https://github.com/Tencent/ncnn.git
  1. install pytorch

install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:

conda install pytorch
  1. install
cd /pathto/ncnntools/pnnx/python
python setup.py install

Note: If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:

export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc" 

To do these, you must install Torchvision and Protobuf first.

Tests

cd /pathto/ncnn/tools/pnnx/python
pytest tests

Usage

  1. export model to pnnx
import torch
import torchvision.models as models
import pnnx

net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when torch tracing raises error
# opt_net = pnnx.export(net, "resnet18.pt", x, check_trace=False)
opt_net = pnnx.export(net, "resnet18.pt", x)
  1. convert existing model to pnnx
import torch
import pnnx

x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)

API Reference

  1. pnnx.export

model (torch.nn.Model): model to be exported.

ptpath (str): the torchscript name.

inputs (torch.Tensor of list of torch.Tensor) expected inputs of the model.

inputs2 (torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.

input_shapes (Optional, list of int or list of list with int type inside) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.

input_types (Optional, str or list of str) types of model inputs, it should have the same length with input_shapes. for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.

typename torch type
f32 torch.float32 or torch.float
f64 torch.float64 or torch.double
f16 torch.float16 or torch.half
u8 torch.uint8
i8 torch.int8
i16 torch.int16 or torch.short
i32 torch.int32 or torch.int
i64 torch.int64 or torch.long
c32 torch.complex32
c64 torch.complex64
c128 torch.complex128

input_shapes2 (Optional, list of int or list of list with int type inside) shapes of alternative model inputs, the format is identical to input_shapes. Usually, it is used with input_shapes to resolve dynamic shape (-1) in model graph.

input_types2 (Optional, str or list of str) types of alternative model inputs.

device (Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.

customop (Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators. For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or ["/home/nihui/.cache/torch_extensions/fused/fused.so",...].

moduleop (Optional, str or list of str) list of modules to keep as one big operator. for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].

optlevel (Optional, int, default=2) graph optimization level

option optimization level
0 do not apply optimization
1 do not apply optimization
2 optimization more for inference

pnnxparam (Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.

pnnxbin (Optional, str, default="*.pnnx.bin"): PNNX model weight.

pnnxpy (Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code.

pnnxonnx (Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.

ncnnparam (Optional, str, default="*.ncnn.param"): ncnn graph definition.

ncnnbin (Optional, str, default="*.ncnn.bin"): ncnn model weight.

ncnnpy (Optional, str, default="*_ncnn.py"): pyncnn script for inference.

  1. pnnx.convert

ptpath (str): torchscript model to be converted.

Other parameters are consistent with pnnx.export

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pnnx-20240603-py3-none-win_amd64.whl (16.3 MB view details)

Uploaded Python 3 Windows x86-64

pnnx-20240603-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (21.9 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

pnnx-20240603-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (19.8 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

pnnx-20240603-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl (43.5 MB view details)

Uploaded Python 3 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pnnx-20240603-py3-none-win_amd64.whl.

File metadata

  • Download URL: pnnx-20240603-py3-none-win_amd64.whl
  • Upload date:
  • Size: 16.3 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pnnx-20240603-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 2967e6d7df28685464c3ebc932aaf15a76f4c5ff6919f877cf7867435e6ba4c7
MD5 1cbcaa6ff56bb7fa5aaf63a6563e6dff
BLAKE2b-256 4eb028c3ce7e36a92fc9efaa2c310daece53ebf87bf99ef0cd61996ca56698c5

See more details on using hashes here.

File details

Details for the file pnnx-20240603-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pnnx-20240603-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 86473cb164ac9f2fac6668acb1415409dc945608d80948bd91081350e17e31e9
MD5 0c005a684af9fc04163d9a03e43fccd6
BLAKE2b-256 ce3d30dc8afc03af9b67854ae5ba678f0842ddf062850d927a6804becfd0b7c6

See more details on using hashes here.

File details

Details for the file pnnx-20240603-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pnnx-20240603-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 e531d312104772ad7970c9c9413a8ca114d64e8dbf8b39e2895a047c82d6c79b
MD5 e186cdc1ae584b5fc32e139f46a02aed
BLAKE2b-256 e88d185fa0d6880b6c28149ec77fcd89b82d0b1548745ad07d9da040de9858a4

See more details on using hashes here.

File details

Details for the file pnnx-20240603-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pnnx-20240603-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0509cb03e2877844ad347208e0954f241916de0c29e7365110ed611c8d080f5e
MD5 d39b80913fa3263fe4f09c5aa4ff3c95
BLAKE2b-256 08f40f07b5cbd05bbc73b73bfc3824d1a2f082bdaad4d029a296bacfc3540916

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page