Skip to main content

pnnx is an open standard for PyTorch model interoperability.

Project description

pnnx

python wrapper of pnnx, only support python 3.7+ now.

Install from pip

pnnx is available as wheel packages for macOS, Windows and Linux distributions, you can install with pip:

pip install pnnx

Build & Install from source

Prerequisites

On Unix (Linux, OS X)

  • A compiler with C++14 support
  • CMake >= 3.4

On Mac

  • A compiler with C++14 support
  • CMake >= 3.4

On Windows

  • Visual Studio 2015 or higher
  • CMake >= 3.4

Build & install

  1. clone ncnn.
git clone https://github.com/Tencent/ncnn.git
  1. install pytorch

install pytorch according to https://pytorch.org/ . Anaconda is strongly recommended for example:

conda install pytorch
  1. install
cd /pathto/ncnntools/pnnx/python
python setup.py install

Note: If torchvision and pnnx2onnx are needed, you can set the following environment variables before 'python setup.py install' to enable them. e.g. on ubuntu:

export TORCHVISION_INSTALL_DIR="/project/torchvision"
export PROTOBUF_INCLUDE_DIR="/project/protobuf/include"
export PROTOBUF_LIBRARIES="/project/protobuf/lib64/libprotobuf.a"
export PROTOBUF_PROTOC_EXECUTABLE="/project/protobuf/bin/protoc" 

To do these, you must install Torchvision and Protobuf first.

Tests

cd /pathto/ncnn/tools/pnnx/python
pytest tests

Usage

  1. export model to pnnx
import torch
import torchvision.models as models
import pnnx

net = models.resnet18(pretrained=True)
x = torch.rand(1, 3, 224, 224)

# You could try disabling checking when torch tracing raises error
# opt_net = pnnx.export(net, "resnet18.pt", x, check_trace=False)
opt_net = pnnx.export(net, "resnet18.pt", x)
  1. convert existing model to pnnx
import torch
import pnnx

x = torch.rand(1, 3, 224, 224)
opt_net = pnnx.convert("resnet18.pt", x)

API Reference

  1. pnnx.export

model (torch.nn.Model): model to be exported.

ptpath (str): the torchscript name.

inputs (torch.Tensor of list of torch.Tensor) expected inputs of the model.

inputs2 (torch.Tensor of list of torch.Tensor) alternative inputs of the model. Usually, it is used with input_shapes to resolve dynamic shape.

input_shapes (Optional, list of int or list of list with int type inside) shapes of model inputs. It is used to resolve tensor shapes in model graph. for example, [1,3,224,224] for the model with only 1 input, [[1,3,224,224],[1,3,224,224]] for the model that have 2 inputs.

input_types (Optional, str or list of str) types of model inputs, it should have the same length with input_shapes. for example, "f32" for the model with only 1 input, ["f32", "f32"] for the model that have 2 inputs.

typename torch type
f32 torch.float32 or torch.float
f64 torch.float64 or torch.double
f16 torch.float16 or torch.half
u8 torch.uint8
i8 torch.int8
i16 torch.int16 or torch.short
i32 torch.int32 or torch.int
i64 torch.int64 or torch.long
c32 torch.complex32
c64 torch.complex64
c128 torch.complex128

input_shapes2 (Optional, list of int or list of list with int type inside) shapes of alternative model inputs, the format is identical to input_shapes. Usually, it is used with input_shapes to resolve dynamic shape (-1) in model graph.

input_types2 (Optional, str or list of str) types of alternative model inputs.

device (Optional, str, default="cpu") device type for the input in TorchScript model, cpu or gpu.

customop (Optional, str or list of str) list of Torch extensions (dynamic library) for custom operators. For example, "/home/nihui/.cache/torch_extensions/fused/fused.so" or ["/home/nihui/.cache/torch_extensions/fused/fused.so",...].

moduleop (Optional, str or list of str) list of modules to keep as one big operator. for example, "models.common.Focus" or ["models.common.Focus","models.yolo.Detect"].

optlevel (Optional, int, default=2) graph optimization level

option optimization level
0 do not apply optimization
1 do not apply optimization
2 optimization more for inference

pnnxparam (Optional, str, default="*.pnnx.param", * is the model name): PNNX graph definition file.

pnnxbin (Optional, str, default="*.pnnx.bin"): PNNX model weight.

pnnxpy (Optional, str, default="*_pnnx.py"): PyTorch script for inference, including model construction and weight initialization code.

pnnxonnx (Optional, str, default="*.pnnx.onnx"): PNNX model in onnx format.

ncnnparam (Optional, str, default="*.ncnn.param"): ncnn graph definition.

ncnnbin (Optional, str, default="*.ncnn.bin"): ncnn model weight.

ncnnpy (Optional, str, default="*_ncnn.py"): pyncnn script for inference.

  1. pnnx.convert

ptpath (str): torchscript model to be converted.

Other parameters are consistent with pnnx.export

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pnnx-20240815-py3-none-win_amd64.whl (16.6 MB view details)

Uploaded Python 3 Windows x86-64

pnnx-20240815-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (22.6 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

pnnx-20240815-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (20.2 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64

pnnx-20240815-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl (45.1 MB view details)

Uploaded Python 3 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

File details

Details for the file pnnx-20240815-py3-none-win_amd64.whl.

File metadata

  • Download URL: pnnx-20240815-py3-none-win_amd64.whl
  • Upload date:
  • Size: 16.6 MB
  • Tags: Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pnnx-20240815-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 9bcef7d488b85c2e52cb6cce63b75ea02181cb6ae10f2ad83b3c83d078147eb0
MD5 bad20cc148beb476c2d2165f57bf92f4
BLAKE2b-256 045053e3087179ab0b86ce27cc67067c780554cbd0e64421b90000a26371b9c7

See more details on using hashes here.

File details

Details for the file pnnx-20240815-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pnnx-20240815-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 52e12a1be1fd6470d6fa56151a47c42c44f4b9722baae095c2371ed25c68ee10
MD5 f19ea4205c4002de27f024111cf4401e
BLAKE2b-256 47bf48bafe5d7d1c9b5df67033a2c9c6828be4e83a7c83fad2ea89b65fc8f861

See more details on using hashes here.

File details

Details for the file pnnx-20240815-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for pnnx-20240815-py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 f6f4d08c55b55d5680cd78efd8b5fc6135a8393b1b8a47def54280607bcf8406
MD5 fa839323826c4b9c54752ea5760ae3ba
BLAKE2b-256 47f4cef01de21bf31edbb9312330b4d920f256f263f0dddee7c224c77199557d

See more details on using hashes here.

File details

Details for the file pnnx-20240815-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pnnx-20240815-py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c6915d302243887ce1600392e457c78953cc9e1a61608025906b3aca4e63aad
MD5 32ab1445ca9aa1dc57ac4b234a762e82
BLAKE2b-256 0498d350a6ed7da7cd355506e450170dcb05db370f38edcf8defa39366e5077b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page