A library for easy integration with Groq API, including image handling
Project description
PocketGroq
PocketGroq provides a simpler interface to interact with the Groq API, aiding in rapid development by abstracting complex API calls into simple functions. It now includes a powerful WebTool for web searches and content retrieval, enhancing its capabilities for information gathering and processing.
Installation and Upgrading
Installing PocketGroq
Option 1: Install from PyPI (Recommended)
The easiest way to install PocketGroq is directly from PyPI using pip:
pip install pocketgroq
This will install the latest stable version of PocketGroq and its dependencies.
Option 2: Install from Source
If you want to use the latest development version or contribute to PocketGroq, you can install it from the source:
- Clone the repository:
git clone https://github.com/jgravelle/pocketgroq.git
cd pocketgroq
- Install the package and its dependencies:
pip install -e .
This will install PocketGroq in editable mode, allowing you to make changes to the source code and immediately see the effects.
Upgrading PocketGroq
To upgrade an existing installation of PocketGroq to the latest version, use the following command:
pip install --upgrade pocketgroq
This will fetch and install the most recent version of PocketGroq from PyPI, along with any updated dependencies.
To upgrade to a specific version, you can specify the version number:
pip install --upgrade pocketgroq==0.2.4
After upgrading, it's a good idea to verify the installed version:
pip show pocketgroq
This will display information about the installed PocketGroq package, including its version number.
Basic Usage
Initializing GroqProvider and WebTool
from pocketgroq import GroqProvider
from pocketgroq.web_tool import WebTool
# Initialize the GroqProvider
groq = GroqProvider()
# Initialize the WebTool
web_tool = WebTool(num_results=5, max_tokens=4096)
Performing Web Searches
query = "Latest developments in AI"
search_results = web_tool.search(query)
for result in search_results:
print(f"Title: {result['title']}")
print(f"URL: {result['url']}")
print(f"Description: {result['description']}")
print("---")
Retrieving Web Content
url = "https://example.com/article"
content = web_tool.get_web_content(url)
print(content[:500]) # Print first 500 characters
Combining Web Search with Language Model
query = "Explain the latest breakthroughs in quantum computing"
search_results = web_tool.search(query)
# Prepare context from search results
context = "\n".join([f"{r['title']}: {r['description']}" for r in search_results])
# Generate response using the context
prompt = f"Based on the following information:\n\n{context}\n\nProvide a concise summary of the latest breakthroughs in quantum computing."
response = groq.generate(prompt, max_tokens=4096, model="llama3-70b-8192", temperature=0.0)
print(response)
Performing Basic Chat Completion
response = groq.generate(
prompt="Explain the importance of fast language models",
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
stream=False
)
print(response)
Streaming a Chat Completion
stream = groq.generate(
prompt="Explain the importance of fast language models",
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
stream=True
)
for chunk in stream:
print(chunk, end="")
Overriding the Default Model
selected_model = 'llama3-groq-8b-8192-tool-use-preview'
response = groq.generate("Explain quantum computing", model=selected_model)
print("Response with Selected Model:", response)
Performing a Chat Completion with a Stop Sequence
response = groq.generate(
prompt="Count to 10. Your response must begin with \"1, \". Example: 1, 2, 3, ...",
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=", 6",
stream=False
)
print(response)
Asynchronous Generation
import asyncio
async def main():
response = await groq.generate(
prompt="Explain the theory of relativity",
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
async_mode=True
)
print(response)
asyncio.run(main())
Streaming an Async Chat Completion
import asyncio
async def main():
stream = await groq.generate(
prompt="Explain the importance of fast language models",
model="llama3-8b-8192",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
stream=True,
async_mode=True
)
async for chunk in stream:
print(chunk, end="")
asyncio.run(main())
JSON Mode
from typing import List, Optional
from pydantic import BaseModel
from pocketgroq import GroqProvider
class Ingredient(BaseModel):
name: str
quantity: str
quantity_unit: Optional[str]
class Recipe(BaseModel):
recipe_name: str
ingredients: List[Ingredient]
directions: List[str]
def get_recipe(recipe_name: str) -> Recipe:
response = groq.generate(
prompt=f"Fetch a recipe for {recipe_name}",
model="llama3-8b-8192",
temperature=0,
stream=False,
json_mode=True
)
return Recipe.parse_raw(response)
def print_recipe(recipe: Recipe):
print("Recipe:", recipe.recipe_name)
print("\nIngredients:")
for ingredient in recipe.ingredients:
print(f"- {ingredient.name}: {ingredient.quantity} {ingredient.quantity_unit or ''}")
print("\nDirections:")
for step, direction in enumerate(recipe.directions, start=1):
print(f"{step}. {direction}")
recipe = get_recipe("apple pie")
print_recipe(recipe)
Tool Usage
PocketGroq allows you to define tools (functions) that the model can use during the conversation:
def reverse_string(input_string: str) -> dict:
return {"reversed_string": input_string[::-1]}
tools = [
{
"type": "function",
"function": {
"name": "reverse_string",
"description": "Reverse the given string",
"parameters": {
"type": "object",
"properties": {
"input_string": {
"type": "string",
"description": "The string to be reversed",
}
},
"required": ["input_string"],
},
"implementation": reverse_string
}
}
]
response = groq.generate("Please reverse the string 'hello world'", tools=tools)
print("Response:", response)
Vision (llava-v1.5-7b-4096-preview model only)
from pocketgroq import GroqProvider
import base64
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
groq = GroqProvider()
# Via URL
response_url = groq.generate(
prompt="What's in this image?",
model="llava-v1.5-7b-4096-preview",
image_url="https://example.com/image.png"
)
print(response_url)
# Via passed-in image
image_path = "path_to_your_image.jpg"
base64_image = encode_image(image_path)
response_base64 = groq.generate(
prompt="What's in this image?",
model="llava-v1.5-7b-4096-preview",
image_url=f"data:image/jpeg;base64,{base64_image}"
)
print(response_base64)
WebTool Functionality
The WebTool provides two main functions:
search(query: str, num_results: int = 10) -> List[Dict[str, Any]]
: Performs a web search and returns a list of search results.get_web_content(url: str) -> str
: Retrieves the content of a web page.
Example: Advanced Web Search and Content Analysis
from pocketgroq import GroqProvider
from pocketgroq.web_tool import WebTool
groq = GroqProvider()
web_tool = WebTool()
# Perform a web search
query = "Recent advancements in renewable energy"
search_results = web_tool.search(query, num_results=3)
# Analyze each search result
for result in search_results:
print(f"Analyzing: {result['title']}")
content = web_tool.get_web_content(result['url'])
analysis_prompt = f"Analyze the following content about renewable energy and provide key insights:\n\n{content[:4000]}"
analysis = groq.generate(analysis_prompt, max_tokens=1000)
print(f"Analysis: {analysis}")
print("---")
This example demonstrates how to use the WebTool to perform a search, retrieve content from each search result, and then use the GroqProvider to analyze the content.
Use Case Scenarios
- Content Generation: Use PocketGroq for automated blog post writing, social media content creation, or product descriptions.
blog_topic = "The Future of Artificial Intelligence"
blog_post = groq.generate(f"Write a 500-word blog post about {blog_topic}")
print(blog_post)
- Code Assistant: Leverage PocketGroq for code explanation, debugging, or generation.
code_snippet = """
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
"""
explanation = groq.generate(f"Explain this Python code and suggest any improvements:\n\n{code_snippet}")
print(explanation)
- Data Analysis: Use PocketGroq to interpret data or generate data analysis reports.
data = {
"sales": [100, 150, 200, 180, 220],
"expenses": [80, 90, 110, 100, 130]
}
analysis = groq.generate(f"Analyze this sales and expenses data and provide insights:\n\n{data}", json_mode=True)
print(analysis)
- Image Analysis: Utilize PocketGroq's image handling capabilities for various visual tasks.
image_url = "https://example.com/chart.jpg"
chart_analysis = groq.generate("Analyze this chart image and provide key insights", image_path=image_url)
print(chart_analysis)
- Automated Customer Support: Implement PocketGroq in a chatbot for handling customer inquiries.
user_query = "How do I reset my password?"
response = groq.generate(f"Provide a step-by-step guide to answer this customer query: {user_query}")
print(response)
- Web Research Assistant: Utilize PocketGroq's WebTool for automated web research and summarization.
from pocketgroq import GroqProvider
from pocketgroq.web_tool import WebTool
groq = GroqProvider()
web_tool = WebTool()
research_topic = "Impact of artificial intelligence on job markets"
search_results = web_tool.search(research_topic, num_results=5)
research_summary = groq.generate(
f"Based on the following search results about '{research_topic}', provide a comprehensive summary:\n\n" +
"\n".join([f"- {r['title']}: {r['description']}" for r in search_results])
)
print(research_summary)
Configuration
PocketGroq uses environment variables for configuration. Set GROQ_API_KEY
in your environment or in a .env
file in your project root.
Error Handling
PocketGroq raises custom exceptions:
GroqAPIKeyMissingError
: Raised when the Groq API key is missing.GroqAPIError
: Raised when there's an error with the Groq API.
Handle these exceptions in your code for robust error management.
Contributing
Feel free to open issues or submit pull requests on the GitHub repository if you encounter any problems or have feature suggestions.
License
This project is licensed under the MIT License. Mention J. Gravelle in your code and/or docs. He's kinda full of himself.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pocketgroq-0.2.4.tar.gz
.
File metadata
- Download URL: pocketgroq-0.2.4.tar.gz
- Upload date:
- Size: 13.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 437968036737ea9b7aa1506d76b1b605c7f48cd26bd51e8ae91f27dab7fbaaeb |
|
MD5 | 2f1ed8a9c887444145a475f5ea14bfed |
|
BLAKE2b-256 | fee6516550eb64cd4fe82fa027d405857dc20460946fa6e64396f07048878fef |
File details
Details for the file pocketgroq-0.2.4-py3-none-any.whl
.
File metadata
- Download URL: pocketgroq-0.2.4-py3-none-any.whl
- Upload date:
- Size: 9.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 753ce3b780cd2f0d4b99a6a3674f3233e8f0b385bc3c0ed9b48506bc2de1711d |
|
MD5 | 05c9a01fa945373b786d69da6d752917 |
|
BLAKE2b-256 | fe45e2056d56f267549fa7e19fb319ad7c41274695fd1fbfaabaa8e5c9695389 |