Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Partially observable hidden Markov model

Project Description

pohmm is an implementation of the partially observable hidden Markov model, a generalization of the hidden Markov model in which the underlying system state is partially observable through event metadata at each time step.

An application that motivates usage of such a model is keystroke biometrics where the user can be in either a passive or active hidden state at each time step, and the time between key presses depends on the hidden state. In addition, the hidden state depends on the key that was pressed; thus the keys are observed symbols that partially reveal the hidden state of the user.

For examples and documentation, see

Release History

Release History

This version
History Node


Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pohmm-0.2.tar.gz (402.8 kB) Copy SHA256 Checksum SHA256 Source Mar 31, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting