Skip to main content

package consisting of the scripts for operating on the point cloud / photogrammetric data

Project description

@geospatial-pipelines/data_preparation:

This package provides the tools and utils for the first stage of the operation after fetching data: allowing users to do operations of the current raw dataset of pointcloud (.las, .laz, .pcd) for operations like: - Cropping (2D/3D cropping) - conversion of the coordinates - combination of point clouds - conversion across various formats.

installation and setup:

  • Install from the pip directory: pip install pointcloud_extraction_toolkit.
  • Or via the source by cloning the whole geospatial-pipeline and then installing the file via the pip install -r requirements.txt.

Various packages:

package_file remarks
cameras.utils consist of methods to use the API across colmap / neuralangelo for photogrammetry
pdal.pipeline_generation scripts to generate the pipeline for PDAL to do necessary transformations
cropping Script to crop the given portion that you want to fetch.
threed_pointcloud script that integrates the open3D for 3D data cropping at microlevel

API's :

There are colab tutorials in test/ folder that explain the various usecase, but now try to fetch the

  1. Import the cameras package for the photogrammetry pipeline processing to fetch the pointcloud

Important: You need to setup colmap before this package in order to work.

from pointcloud_extraction_toolkit.cameras.utils import ColmapDataParsing
import os
colmap_progressing = ColmapDataParsing(filepath="demo.mp4", output_dir="./demo_output")

colmap_progressing.convert_photo_to_video(downsampling_rate=5)


## also fetch the image metadata for the algorithm / reviewer in order to showcase the details.


## now fetching the image metadata from the given details in order to later on do the required transformation on the specific frame <> pose basis if needed.
files = './output/imgs'

data_info = {}

for filename in os.listdir(files):
    full_path = os.path.join(files, filename)
    imagemetadata = colmap_progressing.get_image_metadata(full_path)
    data_info[filename].append(imagemetadata)

## and finally the colmap transformation

await colmap_processing.colmap_transformation()

## in the results you seem to see some of the outputs are not compatible with the alignment then run the following method to fix and rerun colmap_transformation().
## analyze_colmap_images(self,camera_bin_path, transform_file, camera_depth, coordinates_adjust = ["0", "0", "0", "1"] )


colmap_processing.analyze_colmap_images(camera_bin_path= files + "stereo/camera.bin" , transform_file= files + "transforms.json", camera_depth = "", coordinates_adjust = [] )
  1. Tutorial for 3D data processing directly:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pointcloud_extraction-0.0.4.tar.gz (47.9 kB view details)

Uploaded Source

Built Distribution

pointcloud_extraction-0.0.4-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file pointcloud_extraction-0.0.4.tar.gz.

File metadata

  • Download URL: pointcloud_extraction-0.0.4.tar.gz
  • Upload date:
  • Size: 47.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pointcloud_extraction-0.0.4.tar.gz
Algorithm Hash digest
SHA256 f7326a99f5d5921f3acddca741ea14da8efd9e1223c5743e7e64f68df4cf2cac
MD5 476fe50c39e9ee58e67e05e9d9d89441
BLAKE2b-256 3f7560d0b5cdb45de71a145f94e6d5c12f9865d0a5765c3d9772c121f4ebd5d2

See more details on using hashes here.

File details

Details for the file pointcloud_extraction-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pointcloud_extraction-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 5ad0791d3e2d023abd0341f80af72f28154436b53ee85f1b85cf780b33939088
MD5 81a261be476fcc9edff9b86b03c28485
BLAKE2b-256 ff934df0cf1553aa6fb2d751cfd5a29478e78d56ab95a269e8cb608a3a2408a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page