Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Tools for compiling and disassembling Pokémon Red and Pokémon Crystal.

Project description

Pokémon Crystal utilities and extras

`` parses the ROM and provides convenient classes to dump human-readable ASM with the global `to_asm()` method. This ASM can then be compiled back into the original ROM. Currently it parses map headers, "second" map headers, map event headers, map script headers, map triggers, map "callbacks", map blockdata, xy triggers, warps, people-events, texts and scripts.

#### Simple ASM generation example

Note: throughout these examples it is possible to use `reload(crystal)` instead of `import pokemontools.crystal`. Once the module is loaded a first time, it must be reloaded if the file changes and the updates are desired.

import pokemontools.crystal as crystal

# parse the ROM

# create a new dump
asm = crystal.Asm()

# insert the first 10 maps
x = 10

# dump to extras/output.txt

After running those lines, `cp extras/output.txt main.asm` and run `git diff main.asm` to confirm that changes to `main.asm` have occurred. To test whether or not the newly inserted ASM compiles into the same ROM, use: `make clean && make`. This will complain very loudly if something is broken.

#### Testing

Unit tests cover most of the classes.


#### Parsing a script at a known address

Here is a demo of how to investigate a particular script, starting with only an address to a known script (0x58043). In this case, the script calls the `2writetext` command to show some dialog. This dialog will be shown at the end of the example.

import pokemontools.crystal as crystal

# parse the script at 0x58043 from the map event header at 0x584c3
# from the second map header at 0x958b8
# from the map header at 0x941ae
# for "Ruins of Alph Outside" (map_group=3 map_id=0x16)
script = Script(0x58043)

# show the script
print script.to_asm()

# what labels does it point to in the to_asm output?
# these must be present in the final asm file for rgbasm to compile the file
objdeps = script.get_dependencies()
print str(objdeps)

# the individual commands that make up the script
commands = script.commands
print str(commands)

# the 3rd command is 2writetext and points to a text
thirdcommand = script.commands[2]
print thirdcommand
# <crystal.2writetextCommand instance at 0x8ad4c0c>

# look at the command parameters
params = thirdcommand.params
print params
# {0: <crystal.RawTextPointerLabelParam instance at 0x8ad4b0c>}

# 2writetext always has a single parameter
definition_param_count = len(getattr(crystal, "2writetextCommand").param_types.keys())
current_param_count = len(params.keys())
assert definition_param_count == current_param_count, "this should never " + \
"happen: instance of a command has more parameters than the " + \
"definition of the command allows"

# get the first parameter (the text pointer)
param = params[0]
print param
# <crystal.RawTextPointerLabelParam instance at 0x8ad4b0c>

# RawTextPointerLabelParam instances point to their text
text = param.text
print text
# <crystal.TextScript instance at 0x8ad47ec>

# now investigate this text appearing in this script in "Ruins of Alph Outside"
print text.to_asm()

The final output will be the following text.

db $0, "Hm? That's a #-", $4f
db "DEX, isn't it?", $55
; ...

However, this is not how that `TextScript` object would appear in the final ASM. To see how it would appear in `main.asm` once inserted, you would run `print crystal.to_asm(text)` to get the following.

UnknownText_0x580c7: ; 0x580c7
db $0, "Hm? That's a #-", $4f
db "DEX, isn't it?", $55
db "May I see it?", $51
db "There are so many", $4f
db "kinds of #MON.", $51
db "Hm? What's this?", $51
db "What is this", $4f
db "#MON?", $51
db "It looks like the", $4f
db "strange writing on", $51
db "the walls of the", $4f
db "RUINS.", $51
db "If those drawings", $4f
db "are really #-", $55
db "MON, there should", $55
db "be many more.", $51
db "I know! Let me up-", $4f
db "grade your #-", $55
db "DEX. Follow me.", $57
; 0x581e5

#### Figuring out where a script appears based on a known address

Another approach is to parse the entire ROM, then check a script at a particular address. This has the advantage that the script object will have the `map_group` and `map_id` variables set.

import pokemontools.crystal as crystal

# parse the ROM

# get the parsed script
script = crystal.script_parse_table[0x58043]

# read its attributes to figure out map group / map id
map_group = script.map_group
map_id = script.map_id

# MapHeader is not given all the info yet
# in the mean time "map_names" contains some metadata
map_dict = crystal.map_names[map_group][map_id]
map_header = map_dict["header_new"]

print map_dict["name"]
# Ruins of Alph Outside

While the above doesn't show this, it turns out that the script at 0x58043 is referenced in the `MapEventHeader` as a person-event.

print map_header.second_map_header.event_header.to_asm()

This will show a structure roughly like:

person_event $3c, 19, 15, $7, $0, 255, 255, $0, 0, UnknownScript_0x58043, $0703

within this:

MapEventHeader_0x584c3: ; 0x584c3
; filler
db 0, 0

; warps
db 11
warp_def $13, $6, 1, GROUP_UNION_CAVE_B1F, MAP_UNION_CAVE_B1F
warp_def $1b, $6, 2, GROUP_UNION_CAVE_B1F, MAP_UNION_CAVE_B1F

; xy triggers
db 2
xy_trigger 1, $e, $b, $0, UnknownScript_0x58031, $0, $0
xy_trigger 1, $f, $a, $0, UnknownScript_0x5803a, $0, $0

; signposts
db 3
signpost 8, 16, $0, UnknownScript_0x580b1
signpost 16, 12, $0, UnknownScript_0x580b4
signpost 12, 18, $0, UnknownScript_0x580b7

; people-events
db 5
person_event $27, 24, 8, $6, $0, 255, 255, $2, 1, Trainer_0x58089, $ffff
person_event $3c, 19, 15, $7, $0, 255, 255, $0, 0, UnknownScript_0x58043, $0703
person_event $3a, 21, 17, $3, $0, 255, 255, $a0, 0, UnknownScript_0x58061, $078e
person_event $27, 15, 18, $2, $11, 255, 255, $b0, 0, UnknownScript_0x58076, $078f
person_event $27, 12, 16, $7, $0, 255, 255, $80, 0, UnknownScript_0x5807e, $078f
; 0x58560

#### Helpful ROM investigation tools

import pokemontools.crystal as crystal

# load the bytes

# get a sequence of bytes
crystal.rom_interval(0x112116, 10)
# ['0x48', '0x54', '0x54', '0x50', '0x2f', '0x31', '0x2e', '0x30', '0xd', '0xa']
crystal.rom_interval(0x112116, 10, strings=False)
# [72, 84, 84, 80, 47, 49, 46, 48, 13, 10]

# get bytes until a certain byte
crystal.rom_until(0x112116, 0x50, strings=False)
# ['0x48', '0x54', '0x54']
# [72, 84, 84]

# or just look at the encoded characters directly
# 'HTTP/1.0\r\n'

# look at a text at 0x197186
text = crystal.parse_text_at2(0x197186, 601, debug=False)
print text

That last text at 0x197186 will look like:

OAK: Aha! So
you're !
I was just visit-
ing my old friend
I heard you were
running an errand
for PROF.ELM, so I
waited here.
Oh! What's this?
A rare #MON!

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pokemontools-1.6.0.tar.gz (1.3 MB) Copy SHA256 hash SHA256 Source None Nov 11, 2013

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page