Polaris is a hyperparamter optimization library.
Project description
# Polaris : Hyperparamter optimization library.
[![Documentation Status](https://readthedocs.org/projects/polaris/badge/?version=latest)](https://polaris.readthedocs.io/en/latest/?badge=latest)
Polaris is a hyperparamter optimization library.
We plan to support every state-of-art tuning method as follows.
- Random Search
- Bayesian Optimization
- Tree-structured Parzen Estimators (TPE)
## Documentation
Polaris' documentation can be found at [https://polaris.readthedocs.io/](https://polaris.readthedocs.io/)
## Prerequisites
- Python >= 3.6
- RabbitMQ (Only for parallel execution)
## Installation
```shell
$ pip install polaris-py
```
## Examples
### Sequential Execution
```python
from polaris import Polaris, STATUS_SUCCESS, Trials, Bounds
def pseudo_train(params, exp_info):
lr_squared = (params['lr'] - 0.006) ** 2
weight_decay_squared = (params['weight_decay'] - 0.02) ** 2
loss = lr_squared + weight_decay_squared
return {
'loss': loss,
'status': STATUS_SUCCESS,
}
if __name__ == '__main__':
bounds = [
Bounds('lr', 0.001, 0.01),
Bounds('weight_decay', 0.0002, 0.04),
]
trials = Trials()
polaris = Polaris(
pseudo_train, bounds, 'bayesian_opt',
trials, max_evals=100, exp_key='this_is_test')
best_params = polaris.run()
print(best_params)
```
### Parallel Execution
#### Single Process
1. Run `rabbitmq-server`
1. Set `RABBITMQ_URL` (ampq://guest:guest@localhost//)
1. Run `polaris-worker --exp-key this_is_test`
1. Run codes as follows
### Multiple Processes (Use MPI)
1. Run `rabbitmq-server`
1. Set `RABBITMQ_URL` (ampq://guest:guest@localhost//)
1. Run `mpirun -n 4 polaris-worker --mpi --exp-key this_is_test`
1. Run codes as follows
```python
...
if __name__ == '__main__':
bounds = [
Bounds('lr', 0.001, 0.01),
Bounds('weight_decay', 0.0002, 0.04),
]
trials = Trials()
polaris = Polaris(
pseudo_train, bounds, 'bayesian_opt',
trials, max_evals=100, exp_key='this_is_test')
best_params = polaris.run_parallel()
print(best_params)
```
[![Documentation Status](https://readthedocs.org/projects/polaris/badge/?version=latest)](https://polaris.readthedocs.io/en/latest/?badge=latest)
Polaris is a hyperparamter optimization library.
We plan to support every state-of-art tuning method as follows.
- Random Search
- Bayesian Optimization
- Tree-structured Parzen Estimators (TPE)
## Documentation
Polaris' documentation can be found at [https://polaris.readthedocs.io/](https://polaris.readthedocs.io/)
## Prerequisites
- Python >= 3.6
- RabbitMQ (Only for parallel execution)
## Installation
```shell
$ pip install polaris-py
```
## Examples
### Sequential Execution
```python
from polaris import Polaris, STATUS_SUCCESS, Trials, Bounds
def pseudo_train(params, exp_info):
lr_squared = (params['lr'] - 0.006) ** 2
weight_decay_squared = (params['weight_decay'] - 0.02) ** 2
loss = lr_squared + weight_decay_squared
return {
'loss': loss,
'status': STATUS_SUCCESS,
}
if __name__ == '__main__':
bounds = [
Bounds('lr', 0.001, 0.01),
Bounds('weight_decay', 0.0002, 0.04),
]
trials = Trials()
polaris = Polaris(
pseudo_train, bounds, 'bayesian_opt',
trials, max_evals=100, exp_key='this_is_test')
best_params = polaris.run()
print(best_params)
```
### Parallel Execution
#### Single Process
1. Run `rabbitmq-server`
1. Set `RABBITMQ_URL` (ampq://guest:guest@localhost//)
1. Run `polaris-worker --exp-key this_is_test`
1. Run codes as follows
### Multiple Processes (Use MPI)
1. Run `rabbitmq-server`
1. Set `RABBITMQ_URL` (ampq://guest:guest@localhost//)
1. Run `mpirun -n 4 polaris-worker --mpi --exp-key this_is_test`
1. Run codes as follows
```python
...
if __name__ == '__main__':
bounds = [
Bounds('lr', 0.001, 0.01),
Bounds('weight_decay', 0.0002, 0.04),
]
trials = Trials()
polaris = Polaris(
pseudo_train, bounds, 'bayesian_opt',
trials, max_evals=100, exp_key='this_is_test')
best_params = polaris.run_parallel()
print(best_params)
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
polaris-py-0.7.3.tar.gz
(12.5 kB
view details)
Built Distribution
File details
Details for the file polaris-py-0.7.3.tar.gz
.
File metadata
- Download URL: polaris-py-0.7.3.tar.gz
- Upload date:
- Size: 12.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 12cda01ff855237199afe56c7198b0c9766b4ee4bd41bbef9da7891967d94252 |
|
MD5 | 7878507d9fc9a6c0d25d254d49eec354 |
|
BLAKE2b-256 | 04538a7f151272b10499a878e99e19f298bc92142e032b8e77b28cb7aeba91e0 |
File details
Details for the file polaris_py-0.7.3-py3-none-any.whl
.
File metadata
- Download URL: polaris_py-0.7.3-py3-none-any.whl
- Upload date:
- Size: 18.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 014bf35dd5bf875cadb1f9be11bc9c4c0e5c6410746cfc951087876a7f9dbce8 |
|
MD5 | 923101ae4b67de204731dcd83e6e28aa |
|
BLAKE2b-256 | e33cfadeb8ffedb26dda352f9cc59a7807b8dd322f89450d768cfaa0e3af48b7 |