Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/assets/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_lts_cpu-1.8.0.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

polars_lts_cpu-1.8.0-cp38-abi3-win_amd64.whl (32.5 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_24_aarch64.whl (29.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_lts_cpu-1.8.0-cp38-abi3-macosx_11_0_arm64.whl (27.4 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_lts_cpu-1.8.0-cp38-abi3-macosx_10_12_x86_64.whl (30.7 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_lts_cpu-1.8.0.tar.gz.

File metadata

  • Download URL: polars_lts_cpu-1.8.0.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for polars_lts_cpu-1.8.0.tar.gz
Algorithm Hash digest
SHA256 5ec0ba7d0ab6c0bb653d69ddd76cc3182a85e8329dad897b401944bb01f7835d
MD5 b11deb9fdd47386ea9198441be2a1e0c
BLAKE2b-256 d7b98b60a2d305097a4e51d32146dec80d0f0a2d21ce2f7cbb1bb60fbe57894a

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.0-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.0-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 b8229c2b19601be3e95695c24bcfd76d6fdc6183062bf8413b13141358750ae0
MD5 134993073078910bfddb9c2953303125
BLAKE2b-256 deed0b220fb726cfc1703d9e61028777cbce42fd4029354d48cfb9804a36f39f

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 d5b5dbada57a435ae159b15c70e883b650f360a348495579c9cdf1d1ee6175ea
MD5 31cf5e3d377c8aab4d79cb544ec838ae
BLAKE2b-256 37e3b6f53e1e4c5f050c0cb0a5e788626bacc6add18e8253d2fef96fd5c068d9

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.0-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb539ceefc31644ba517dcba21b9e8c5db69c5f63ec38f47ae2ba0c6fe3b678d
MD5 d46a769dc9f9e775c3284b640965afb9
BLAKE2b-256 b509e68fda01da0d4bbc59d2ea8119767dc97e7f6167abe8207232fbb728f5ba

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.0-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.0-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 daef5f54bfabb865412b92698a6d5f465f57abd7066658febd756423d28b5f60
MD5 f0cb31b659b976b751d02438665fbba0
BLAKE2b-256 72e42333edf7dc3abd6453f4d1b7a8af9c8c1b77f9e882513e133beec043c082

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.0-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.0-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 36acb0e090a584b921575b3e6bab829ec974a796ec16f2e692827f293a6fe890
MD5 1c3c4773c25a36995e79fef3a983791e
BLAKE2b-256 7fada3e8c1cd299408e99eccf37267d807cdcbf1f95a1592fa579377df12f12d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page