Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/assets/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_lts_cpu-1.8.1.tar.gz (4.0 MB view details)

Uploaded Source

Built Distributions

polars_lts_cpu-1.8.1-cp38-abi3-win_amd64.whl (32.5 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_24_aarch64.whl (29.2 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars_lts_cpu-1.8.1-cp38-abi3-macosx_11_0_arm64.whl (27.5 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars_lts_cpu-1.8.1-cp38-abi3-macosx_10_12_x86_64.whl (30.7 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars_lts_cpu-1.8.1.tar.gz.

File metadata

  • Download URL: polars_lts_cpu-1.8.1.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for polars_lts_cpu-1.8.1.tar.gz
Algorithm Hash digest
SHA256 025a60370328d9db55e992449a1cde559c2f5af17af9f0bfb569c31a68b710e7
MD5 8aedc54b2527c5411315dcd333802d78
BLAKE2b-256 ea42fcba1d07b0b0f851dc8cbbda6c38e2e773db457baab8a4a47f4ad6063ec1

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.1-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 aec0afec2332cd3f5c41d92e8a223eb0071017f4023741b676e71300e25f2d30
MD5 9c1358deb84ff41527d5b59944315d8a
BLAKE2b-256 1d7e6cd2c941825a9ff5bb65b5e1fd2dcdbe741c34baf14da30c19676758c473

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 043298a9a839839e9792dca0f47b2e2d6fbc3fa2d6f915c8fe41cae1044448c8
MD5 6682f6b793bf5e535ec504c424c893e2
BLAKE2b-256 4fb4e81fe84d74bd3630c70dd4c274374fda3350b6eeb9a100cace5c6d75eb6c

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f43531cdb1b36596a91b5f0f21be17c475f87e281ec0b1072d4e2ef4b8ca96e2
MD5 86a5ff4c66c78c53b4c541c271bf3a41
BLAKE2b-256 262b3ede8acb3fda4bd529a2cf7324722473c1a54f42e64b355f403a1a11d7bc

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae16edbac291251bf61e77beff21a250600cf1a7a872706e44a79f7b82eb5856
MD5 ba7475ef22580920595a65727e7e467f
BLAKE2b-256 4f3c862eecc60cdd4c7a133ee5cd6ecbf13245133d6771bca3336535e9915fb8

See more details on using hashes here.

File details

Details for the file polars_lts_cpu-1.8.1-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_lts_cpu-1.8.1-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b3f951c54733e0b277aa9f08a7804b6aa3ebdf297fec719eb42a7dbe1664b2dc
MD5 003409af382dfca159336f568fbae879
BLAKE2b-256 040011d6f43a3078c8b3af7e96263f6c4b77046eb9b1e06860c372b2367e52e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page