polars expressions
Project description
polars_ta
Technical Indicator Operators Rewritten in polars
.
We provide wrappers for some functions (like TA-Lib
) that are not pl.Expr
alike.
How to Install
Using pip
pip install -i https://pypi.org/simple --upgrade polars_ta
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade polars_ta # Mirror in China
Build from Source
git clone --depth=1 https://github.com/wukan1986/polars_ta.git
cd polars_ta
python -m build
cd dist
pip install polars_ta-0.1.2-py3-none-any.whl
How to Install TA-Lib
Non-official TA-Lib
wheels can be downloaded from https://github.com/cgohlke/talib-build/releases
Usage
See examples
folder.
# We need to modify the function name by prefixing `ts_` before using them in `expr_coodegen`
from polars_ta.prefix.tdx import *
# Import functions from `wq`
from polars_ta.prefix.wq import *
# Example
df = df.with_columns([
# Load from `wq`
*[ts_returns(CLOSE, i).alias(f'ROCP_{i:03d}') for i in (1, 3, 5, 10, 20, 60, 120)],
*[ts_mean(CLOSE, i).alias(f'SMA_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_std_dev(CLOSE, i).alias(f'STD_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_max(HIGH, i).alias(f'HHV_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_min(LOW, i).alias(f'LLV_{i:03d}') for i in (5, 10, 20, 60, 120)],
# Load from `tdx`
*[ts_RSI(CLOSE, i).alias(f'RSI_{i:03d}') for i in (6, 12, 24)],
])
How We Designed This
- We use
Expr
instead ofSeries
to avoid usingSeries
in the calculation. Functions are no longer methods of class. - Use
wq
first. It mimicsWorldQuant Alpha
and strives to be consistent with them. - Use
ta
otherwise. It is apolars
-style version ofTA-Lib
. It tries to reuse functions fromwq
. - Use
tdx
last. It also tries to import functions fromwq
andta
. - We keep the same signature and parameters as the original
TA-Lib
intalib
. - If there is a naming conflict, we suggest calling
wq
,ta
,tdx
,talib
in order. The higher the priority, the closer the implementation is toExpr
.
Comparison of Our Indicators and Others
See compare
Handling Null/NaN Values
See nan_to_null
Evolve of Our TA-Lib Wrappers
Expr.map_batches
can be used to call third-party libraries, such asTA-Lib, bottleneck
. But because of the input and output format requirements, you need to wrap the third-party API with a function.
- Both input and output can only be one column. If you want to support multiple columns, you need to convert them to
pl.Struct
. After that, you need to useunnest
to splitpl.Struct
. - The output must be
pl.Series
- Start to use
register_expr_namespace
to simplify the code
- Implementation helper.py
- Usage demo demo_ta1.py
- Pros: Easy to use
- Cons:
- The
member function call mode
is not convenient for inputting into genetic algorithms for factor mining __getattribute__
dynamic method call is very flexible, but losesIDE
support.
- The
- Prefix expression. Convert all member functions into formulas
- Implementation wrapper.py
- Usage demo demo_ta2.py
- Pros: Can be input into our implementation of genetic algorithms
- Cons:
__getattribute__
dynamic method call is very flexible, but losesIDE
support.
- Code generation.
- Implementation codegen_talib.py
- Generated result will be at __init__.py
- Usage demo demo_ta3.py
- Pros:
- Can be input into our implementation of genetic algorithms
IDE
support
Debugging
git clone --depth=1 https://github.com/wukan1986/polars_ta.git
cd polars_ta
pip install -e .
Notice:
If you have added some functions in ta
or tdx
, please run prefix_ta.py
or prefix_tdx.py
inside the tools
folder to generate the corrected Python script (with the prefix added).
This is required to use in expr_codegen
.
Reference
- https://github.com/pola-rs/polars
- https://github.com/TA-Lib/ta-lib
- https://github.com/twopirllc/pandas-ta
- https://github.com/bukosabino/ta
- https://github.com/peerchemist/finta
- https://github.com/wukan1986/ta_cn
- https://support.worldquantbrain.com/hc/en-us/community/posts/20278408956439-从价量看技术指标总结-Technical-Indicator-
- https://platform.worldquantbrain.com/learn/operators/operators
polars_ta
基于polars
的算子库。实现量化投研中常用的技术指标、数据处理等函数。对于不易翻译成Expr
的库(如:TA-Lib
)也提供了函数式调用的封装
安装
在线安装
pip install -i https://pypi.org/simple --upgrade polars_ta # 官方源
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple --upgrade polars_ta # 国内镜像源
源码安装
git clone --depth=1 https://github.com/wukan1986/polars_ta.git
cd polars_ta
python -m build
cd dist
pip install polars_ta-0.1.2-py3-none-any.whl
TA-Lib安装
Windows用户不会安装可从https://github.com/cgohlke/talib-build/releases
下载对应版本whl文件
使用方法
参考examples
目录即可,例如:
# 如果需要在`expr_codegen`中使用,需要有`ts_`等前权,这里导入提供了前缀
from polars_ta.prefix.tdx import *
# 导入wq公式
from polars_ta.prefix.wq import *
# 演示生成大量指标
df = df.with_columns([
# 从wq中导入指标
*[ts_returns(CLOSE, i).alias(f'ROCP_{i:03d}') for i in (1, 3, 5, 10, 20, 60, 120)],
*[ts_mean(CLOSE, i).alias(f'SMA_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_std_dev(CLOSE, i).alias(f'STD_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_max(HIGH, i).alias(f'HHV_{i:03d}') for i in (5, 10, 20, 60, 120)],
*[ts_min(LOW, i).alias(f'LLV_{i:03d}') for i in (5, 10, 20, 60, 120)],
# 从tdx中导入指标
*[ts_RSI(CLOSE, i).alias(f'RSI_{i:03d}') for i in (6, 12, 24)],
])
设计原则
- 调用方法由
成员函数
换成独立函数
。输入输出使用Expr
,避免使用Series
- 优先实现
wq
公式,它仿WorldQuant Alpha
公式,与官网尽量保持一致。如果部分功能实现在此更合适将放在此处 - 其次实现
ta
公式,它相当于TA-Lib
的polars
风格的版本。优先从wq
中导入更名 - 最后实现
tdx
公式,它也是优先从wq
和ta
中导入 talib
的函数名与参数与原版TA-Lib
完全一致- 如果出现了命名冲突,建议调用优先级为
wq
、ta
、tdx
、talib
。因为优先级越高,实现方案越接近于Expr
指标区别
请参考compare
空值处理
请参考nan_to_null
TA-Lib封装的演化
Expr.map_batches
可以实现调用第三方库,如TA-Lib, bottleneck
。但因为对输入与输出格式有要求,所以还需要用函数对第三方API封装一下。- 输入输出都只能是一列,如要支持多列需转换成
pl.Struct
。事后pl.Struct
要拆分需使用unnest
- 输出必须是
pl.Series
- 输入输出都只能是一列,如要支持多列需转换成
- 参数多,代码长。开始使用
register_expr_namespace
来简化代码- 实现代码helper.py
- 使用演示demo_ta1.py
- 优点:使用简单
- 不足:
成员函数调用模式
不便于输入到遗传算法中进行因子挖掘 - 不足:
__getattribute__
动态方法调用非常灵活,但失去了IDE
智能提示
- 前缀表达式。将所有的成员函数都转换成公式
- 实现代码wrapper.py
- 使用演示demo_ta2.py
- 优点:可以输入到遗传算法
- 不足:
__getattribute__
动态方法调用非常灵活,但失去了IDE
智能提示
- 代码自动生成。
- 实现代码codegen_talib.py
- 生成结果__init__.py
- 使用演示demo_ta3.py
- 优点:即可以输入到遗传算法,
IDE
还有智能提示
开发调试
git clone --depth=1 https://github.com/wukan1986/polars_ta.git
cd polars_ta
pip install -e .
注意:如果你在ta
或tdx
中添加了新的函数,请再运行tools
下的prefix_ta.py
或prefix_tdx.py
,用于生成对应的前缀文件。前缀文件方便在expr_codegen
中使用
参考
- https://github.com/pola-rs/polars
- https://github.com/TA-Lib/ta-lib
- https://github.com/twopirllc/pandas-ta
- https://github.com/bukosabino/ta
- https://github.com/peerchemist/finta
- https://github.com/wukan1986/ta_cn
- https://support.worldquantbrain.com/hc/en-us/community/posts/20278408956439-从价量看技术指标总结-Technical-Indicator-
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file polars_ta-0.3.0.tar.gz
.
File metadata
- Download URL: polars_ta-0.3.0.tar.gz
- Upload date:
- Size: 49.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 14f358b42bf9d225cf2119c88f12282d07017fbe85edd511a663691c811be4b0 |
|
MD5 | 23c99305b3ed0048cecc20e9cc5b2f23 |
|
BLAKE2b-256 | 2af4fe309336373ed364e72223d2c3ef12f5dc17404569330c91d6574946aa87 |
File details
Details for the file polars_ta-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: polars_ta-0.3.0-py3-none-any.whl
- Upload date:
- Size: 60.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42b4e54c17066b26ae82501f32d4a5b74c1f5471eb091a3696ac9003f4373ee5 |
|
MD5 | 4de19124bd55776fe19a187cf7142e77 |
|
BLAKE2b-256 | 5daa10667d52a5f56f726cead1604b51cd746f0edecd1be3d92b484cc232c3ae |