Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/assets/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_u64_idx-1.10.0.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

polars_u64_idx-1.10.0-cp39-abi3-win_amd64.whl (32.8 MB view details)

Uploaded CPython 3.9+ Windows x86-64

polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_24_aarch64.whl (29.8 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (33.2 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

polars_u64_idx-1.10.0-cp39-abi3-macosx_11_0_arm64.whl (28.2 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

polars_u64_idx-1.10.0-cp39-abi3-macosx_10_12_x86_64.whl (32.0 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file polars_u64_idx-1.10.0.tar.gz.

File metadata

  • Download URL: polars_u64_idx-1.10.0.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for polars_u64_idx-1.10.0.tar.gz
Algorithm Hash digest
SHA256 8bfb16f0d0e58573d9b3bfc42f8a9f14bfae8d5171f137d3573317290c598f13
MD5 8113cf360f6cde21eebb7a47f25b4fb8
BLAKE2b-256 bb2e8d469b868af74d97afc90b66c7f9bdeb17e61d10c2d1ddf3951aea41a62c

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.10.0-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.10.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 26d723202a49b825963d93524f3811e4d552a15c539d67d96b442d9cb696a82f
MD5 e550891aeeafb4207ea6ef25fa793599
BLAKE2b-256 9ad732715a646a688769c543289050ca4d95e5c36478295225c6b6dcc76b1751

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 305022d64cb41f18fdc5fdfd0fadbf15602d6fa1371f54d92c326474ce05fd9e
MD5 b056769d371b31c6435112351bf63cd9
BLAKE2b-256 6c6bc864464b3be55894d5c5dcd1dd5f273d3f00d5f2700b58d1929b43b1593f

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.10.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f16e86e3f825c7d88b2c50c7a71d9704b322c501593aa65402dbdd479f42d177
MD5 1d5a0c1af2324138fc96cd46df1ad403
BLAKE2b-256 974e5848f57a963136996b2a56a648d586b617ef35e12ce73e354616c6bb0a39

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.10.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.10.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0da2394defbea7c24fe966dda2b5a94168d14816f11927f0268afa3a53bee732
MD5 0a5b7d3d92acc3477641f92a8b817a61
BLAKE2b-256 a76ce3652936aaf4b8acd9407295319a1e50867d98c0c55b6c180b9e5ccd233e

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.10.0-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.10.0-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e63c86f0118c82a8f9006993560e7271c2aceab0b46114447319e3697a217ac0
MD5 2014a978808565c9428e68c0f8d6538c
BLAKE2b-256 bc287c32ab1812bb217f48e3f4ccd396fa513d55fff941ea5945bcfeee3954f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page