Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/assets/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_u64_idx-1.11.0.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

polars_u64_idx-1.11.0-cp39-abi3-win_amd64.whl (33.7 MB view details)

Uploaded CPython 3.9+ Windows x86-64

polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_24_aarch64.whl (30.4 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.0 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

polars_u64_idx-1.11.0-cp39-abi3-macosx_11_0_arm64.whl (28.8 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

polars_u64_idx-1.11.0-cp39-abi3-macosx_10_12_x86_64.whl (32.8 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file polars_u64_idx-1.11.0.tar.gz.

File metadata

  • Download URL: polars_u64_idx-1.11.0.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for polars_u64_idx-1.11.0.tar.gz
Algorithm Hash digest
SHA256 3c623f0f93d7d95dc162cd7fd84d248fdbc3d40665907960dc36be222caf7f5d
MD5 5b2b73cbf7af01472f061f5d3ee234d3
BLAKE2b-256 63fd72c604243580811afa98d796d36aa9f6752020ba0b97ae7a170d1e304182

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.11.0-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.11.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 59ced785383c03409071570329a3a206437a7f65bb5e175347d9bf8cae507287
MD5 d971a87940cf5724c2bfaa7ac3fef668
BLAKE2b-256 72033718a6c343f975d3c023ae2faf8b516cf401fca6fab0bbdf9d7ad4844879

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 666269028e0c9282bfda86b61eb61a9b237fd569dba645f02eb3601b483dc24b
MD5 f8f624c5f9d4749113515bd92a47c836
BLAKE2b-256 d4bb90481334fc2007f0a40cd736724f7b0aa0115b47e0e4822743286f9f575c

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.11.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3a0ecd84fb98bb868392d0bce367fbe7f16af6f8c22411e89e2bde76eb03f34
MD5 59c26fd3e260aa424c7a314ab2ad29f5
BLAKE2b-256 ce9241b1dd6422279aef9000b05e28f66062d23d92aede91880f89c1ab124463

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.11.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.11.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 199209babf6731daa8103705f0b44ab6e54a6c35a94673542edbc17aed854078
MD5 287219240ff2b2ef0e82439dda2bfad1
BLAKE2b-256 37ef92b7f6cb873f02fb0d1206fa39bb8e2756ef35bf0adaaa07ed533ccf04de

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.11.0-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.11.0-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 08e0d2308c81c1337e7c7201693e419ec34492cb51d5620e179599440befcc5a
MD5 0fbf4e46a034cb24e4cd38f406fa83d6
BLAKE2b-256 67cf49f8c5964d1a2f70eff3e4b42ec2edba5de51830eba63330cd4c63f31301

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page