Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/assets/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/assets/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the PDS-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.80.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars_u64_idx-1.12.0.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

polars_u64_idx-1.12.0-cp39-abi3-win_amd64.whl (33.8 MB view details)

Uploaded CPython 3.9+ Windows x86-64

polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_24_aarch64.whl (30.5 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.24+ ARM64

polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.1 MB view details)

Uploaded CPython 3.9+ manylinux: glibc 2.17+ x86-64

polars_u64_idx-1.12.0-cp39-abi3-macosx_11_0_arm64.whl (28.9 MB view details)

Uploaded CPython 3.9+ macOS 11.0+ ARM64

polars_u64_idx-1.12.0-cp39-abi3-macosx_10_12_x86_64.whl (32.9 MB view details)

Uploaded CPython 3.9+ macOS 10.12+ x86-64

File details

Details for the file polars_u64_idx-1.12.0.tar.gz.

File metadata

  • Download URL: polars_u64_idx-1.12.0.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for polars_u64_idx-1.12.0.tar.gz
Algorithm Hash digest
SHA256 b7ef569433aea2cc893a222258327ba4c03c1aabd49b021377e1b1b199533198
MD5 1de3b01f4586f17f45b8ad68d5903c17
BLAKE2b-256 22670dfeb4a0300d351272ac18c5c902db27d9bc75b863c33f8b43f271cfc05f

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.12.0-cp39-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.12.0-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 efb073b9baed644595adc4357dcb98dd3eefe5d3d5cb58c1165ff8499aec6c1d
MD5 0592c992cb1aed88efffa250399b59f8
BLAKE2b-256 993697b244749f41ff5947df9b278717d552c807f34f682665ff2e8315d74776

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 1c5bc8f8213eddee7ef850e08230311bda0a9e5cfce682dcf0285519d97d4dcb
MD5 5149d7a4672ac1e124dd2cbcc3300cda
BLAKE2b-256 3afc973a07c0f33424995bb4d276212857401f38f29579a6cca7aa5bf4520f48

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.12.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2ab13af731b3f0d0ae381909933b26a74d77affdd697c1eb4f7f39f8f5d0db6
MD5 89996e04cf58c477a55c91d3889f4fd2
BLAKE2b-256 ee2fe6695e1d87b177aab8b7c8bb499ceb89eb891b06a5acae0a23a517be02a3

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.12.0-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.12.0-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d15ce6a42fa3e5051133a65ae00b00e59460eb209caffe8552a4b1ced7348c9
MD5 b9c226c7e1a61509e330d8416b075446
BLAKE2b-256 708971444b871958e6b06b4dc0586f3afcd4fe32ea20712afc1675e5edf1db19

See more details on using hashes here.

File details

Details for the file polars_u64_idx-1.12.0-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars_u64_idx-1.12.0-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 413b855a60f14fa4c6a2a9ec77d35393e2662d24d9aabbf8a78ea495a86e4f49
MD5 0a1515d8b77c8d105e36ca27e6f7fb5e
BLAKE2b-256 e7b9c9b096649411bde139a64b11627af97ac5d1a8d5214ecc39fabcb7801fb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page