Skip to main content

Blazingly fast DataFrame library

Reason this release was yanked:

regression

Project description

Polars

rust docs Build and test PyPI Latest Release NPM Latest Release

Python Documentation | Rust Documentation | User Guide | Discord | StackOverflow

Blazingly fast DataFrames in Rust, Python & Node.js

Polars is a blazingly fast DataFrames library implemented in Rust using Apache Arrow Columnar Format as memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Rust | Python | ...

To learn more, read the User Guide.

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution
# very expressive query language
>>> (
...     df
...     .sort("fruits")
...     .select(
...         [
...             "fruits",
...             "cars",
...             pl.lit("fruits").alias("literal_string_fruits"),
...             pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...             pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),     # groups by "cars"
...             pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),                         # groups by "fruits"
...             pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),                     # groups by "fruits
...             pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),            # groups by "fruits"
...         ]
...     )
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
 "banana"  "audi"    "fruits"      11   2            8            2            2           
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

Performance 🚀🚀

Polars is very fast, and in fact is one of the best performing solutions available. See the results in h2oai's db-benchmark.

Python setup

Install the latest polars version with:

$ pip3 install -U polars[pyarrow]

Releases happen quite often (weekly / every few days) at the moment, so updating polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust setup

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the master branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Rust version

Required Rust version >=1.58

Documentation

Want to know about all the features Polars supports? Read the docs!

Python

Rust

Node

Contribution

Want to contribute? Read our contribution guideline.

[Python]: compile polars from source

If you want a bleeding edge release or maximal performance you should compile polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler
  2. Install maturin: $ pip3 install maturin
  3. Choose any of:
    • Fastest binary, very long compile times:
      $ cd py-polars && maturin develop --rustc-extra-args="-C target-cpu=native" --release
      
    • Fast binary, Shorter compile times:
      $ cd py-polars && maturin develop --rustc-extra-args="-C codegen-units=16 -C lto=thin -C target-cpu=native" --release
      

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Arrow2

Polars has transitioned to arrow2. Arrow2 is a faster and safer implementation of the Apache Arrow Columnar Format. Arrow2 also has a more granular code base, helping to reduce the compiler bloat.

Use custom Rust function in python?

See this example.

Going big...

Do you expect more than 2^32 ~4,2 billion rows? Compile polars with the bigidx feature flag.

Or for python users install $ pip install -U polars-u64-idx.

Don't use this unless you hit the row boundary as the default polars is faster and consumes less memory.

Acknowledgements

Development of Polars is proudly powered by

Xomnia

Sponsors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars-0.13.47.tar.gz (903.2 kB view details)

Uploaded Source

Built Distributions

polars-0.13.47-cp37-abi3-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.7+Windows x86-64

polars-0.13.47-cp37-abi3-manylinux_2_24_aarch64.whl (10.6 MB view details)

Uploaded CPython 3.7+manylinux: glibc 2.24+ ARM64

polars-0.13.47-cp37-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7+manylinux: glibc 2.12+ x86-64

polars-0.13.47-cp37-abi3-macosx_11_0_arm64.whl (9.9 MB view details)

Uploaded CPython 3.7+macOS 11.0+ ARM64

polars-0.13.47-cp37-abi3-macosx_10_7_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.7+macOS 10.7+ x86-64

File details

Details for the file polars-0.13.47.tar.gz.

File metadata

  • Download URL: polars-0.13.47.tar.gz
  • Upload date:
  • Size: 903.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.11-beta.1

File hashes

Hashes for polars-0.13.47.tar.gz
Algorithm Hash digest
SHA256 06046390f647616358b9ab942b64d7861141adf626dcd6ad7e25368862f33b91
MD5 f67373bc0fc98db048950a7b0c7f0784
BLAKE2b-256 6690b9ccf8f95de29b22f183561b897f2414f34c85c619c57978771a44bb576b

See more details on using hashes here.

File details

Details for the file polars-0.13.47-cp37-abi3-win_amd64.whl.

File metadata

  • Download URL: polars-0.13.47-cp37-abi3-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.7+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.12.1

File hashes

Hashes for polars-0.13.47-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 111e53f3fe1388dfa2cf986412a2f36fe9162e11e3899af35762fa81b0402c86
MD5 a69af24a68631d0a1afdece47d47db2e
BLAKE2b-256 9d10be8948b5654009addcb197126b1e8e046b5d76043f883da093032a2dcd01

See more details on using hashes here.

File details

Details for the file polars-0.13.47-cp37-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars-0.13.47-cp37-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 e5b63314babc60c9614e7f1c9d735116cf3548482571b91551b60b214d11c1fa
MD5 020081acc291895f28a354c22b99d272
BLAKE2b-256 6c6c6343dd16e07c157253da273687840d359a58b5f37fa55ff2e37802f4fec1

See more details on using hashes here.

File details

Details for the file polars-0.13.47-cp37-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for polars-0.13.47-cp37-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d29f925d832c6ec830b86e4ae4408292ed4a9638a320648622cc36fa1c05cfe
MD5 f73e3f6d403a7e0d8cc26f9c89a2d58b
BLAKE2b-256 1a60be57c0d462a757d2e7aa85f5fa7ecdf41ed660ee6e788d825f5dd939a3b6

See more details on using hashes here.

File details

Details for the file polars-0.13.47-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars-0.13.47-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 571bbe50f77dcc8af8af6bb12994f6f59dae1d2c72d4f7feedc0c0b24ad1d0d6
MD5 4081563b7768017e6a9d49597813ee55
BLAKE2b-256 f09daa8380e3aee1f4b4464513f75f8e54288ce6e7b897c1e1b74533d6b0bba9

See more details on using hashes here.

File details

Details for the file polars-0.13.47-cp37-abi3-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for polars-0.13.47-cp37-abi3-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8ab6aee6fc69b40ec9c52de9d02fb827f60095d74b64929984ee7a6d489fd1ac
MD5 1932f21eb36d8cd19991b825a8eac7d9
BLAKE2b-256 37f8682f214f34616a6ccd1dbf55564a6ea079a8875ce9f9787fc405b1dcb4f7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page