Skip to main content

Blazingly fast DataFrame library

Project description

Polars logo

Documentation: Python - Rust - Node.js - R | StackOverflow: Python - Rust - Node.js - R | User guide | Discord

Polars: Blazingly fast DataFrames in Rust, Python, Node.js, R, and SQL

Polars is a DataFrame interface on top of an OLAP Query Engine implemented in Rust using Apache Arrow Columnar Format as the memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Hybrid Streaming (larger-than-RAM datasets)
  • Rust | Python | NodeJS | R | ...

To learn more, read the user guide.

Python

>>> import polars as pl
>>> df = pl.DataFrame(
...     {
...         "A": [1, 2, 3, 4, 5],
...         "fruits": ["banana", "banana", "apple", "apple", "banana"],
...         "B": [5, 4, 3, 2, 1],
...         "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
...     }
... )

# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
...     "fruits",
...     "cars",
...     pl.lit("fruits").alias("literal_string_fruits"),
...     pl.col("B").filter(pl.col("cars") == "beetle").sum(),
...     pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
...     pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
...     pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
...     pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
 fruits    cars      literal_stri  B    sum_A_by_ca  sum_A_by_fr  rev_A_by_fr  sort_A_by_B 
 ---       ---       ng_fruits     ---  rs           uits         uits         _by_fruits  
 str       str       ---           i64  ---          ---          ---          ---         
                     str                i64          i64          i64          i64         
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
 "apple"   "beetle"  "fruits"      11   4            7            4            4           
 "apple"   "beetle"  "fruits"      11   4            7            3            3           
 "banana"  "beetle"  "fruits"      11   4            8            5            5           
 "banana"  "audi"    "fruits"      11   2            8            2            2           
 "banana"  "beetle"  "fruits"      11   4            8            1            1           
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

SQL

>>> df = pl.scan_csv("docs/data/iris.csv")
>>> ## OPTION 1
>>> # run SQL queries on frame-level
>>> df.sql("""
...	SELECT species,
...	  AVG(sepal_length) AS avg_sepal_length
...	FROM self
...	GROUP BY species
...	""").collect()
shape: (3, 2)
┌────────────┬──────────────────┐
 species     avg_sepal_length 
 ---         ---              
 str         f64              
╞════════════╪══════════════════╡
 Virginica   6.588            
 Versicolor  5.936            
 Setosa      5.006            
└────────────┴──────────────────┘
>>> ## OPTION 2
>>> # use pl.sql() to operate on the global context
>>> df2 = pl.LazyFrame({
...    "species": ["Setosa", "Versicolor", "Virginica"],
...    "blooming_season": ["Spring", "Summer", "Fall"]
...})
>>> pl.sql("""
... SELECT df.species,
...     AVG(df.sepal_length) AS avg_sepal_length,
...     df2.blooming_season
... FROM df
... LEFT JOIN df2 ON df.species = df2.species
... GROUP BY df.species, df2.blooming_season
... """).collect()

SQL commands can also be run directly from your terminal using the Polars CLI:

# run an inline SQL query
> polars -c "SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;"

# run interactively
> polars
Polars CLI v0.3.0
Type .help for help.

> SELECT species, AVG(sepal_length) AS avg_sepal_length, AVG(sepal_width) AS avg_sepal_width FROM read_csv('docs/data/iris.csv') GROUP BY species;

Refer to the Polars CLI repository for more information.

Performance 🚀🚀

Blazingly fast

Polars is very fast. In fact, it is one of the best performing solutions available. See the TPC-H benchmarks results.

Lightweight

Polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:

  • polars: 70ms
  • numpy: 104ms
  • pandas: 520ms

Handles larger-than-RAM data

If you have data that does not fit into memory, Polars' query engine is able to process your query (or parts of your query) in a streaming fashion. This drastically reduces memory requirements, so you might be able to process your 250GB dataset on your laptop. Collect with collect(streaming=True) to run the query streaming. (This might be a little slower, but it is still very fast!)

Setup

Python

Install the latest Polars version with:

pip install polars

We also have a conda package (conda install -c conda-forge polars), however pip is the preferred way to install Polars.

Install Polars with all optional dependencies.

pip install 'polars[all]'

You can also install a subset of all optional dependencies.

pip install 'polars[numpy,pandas,pyarrow]'

See the User Guide for more details on optional dependencies

To see the current Polars version and a full list of its optional dependencies, run:

pl.show_versions()

Releases happen quite often (weekly / every few days) at the moment, so updating Polars regularly to get the latest bugfixes / features might not be a bad idea.

Rust

You can take latest release from crates.io, or if you want to use the latest features / performance improvements point to the main branch of this repo.

polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }

Requires Rust version >=1.71.

Contributing

Want to contribute? Read our contributing guide.

Python: compile Polars from source

If you want a bleeding edge release or maximal performance you should compile Polars from source.

This can be done by going through the following steps in sequence:

  1. Install the latest Rust compiler

  2. Install maturin: pip install maturin

  3. cd py-polars and choose one of the following:

    • make build-release, fastest binary, very long compile times
    • make build-opt, fast binary with debug symbols, long compile times
    • make build-debug-opt, medium-speed binary with debug assertions and symbols, medium compile times
    • make build, slow binary with debug assertions and symbols, fast compile times

    Append -native (e.g. make build-release-native) to enable further optimizations specific to your CPU. This produces a non-portable binary/wheel however.

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars.

Using custom Rust functions in Python

Extending Polars with UDFs compiled in Rust is easy. We expose PyO3 extensions for DataFrame and Series data structures. See more in https://github.com/pola-rs/pyo3-polars.

Going big...

Do you expect more than 2^32 (~4.2 billion) rows? Compile Polars with the bigidx feature flag or, for Python users, install pip install polars-u64-idx.

Don't use this unless you hit the row boundary as the default build of Polars is faster and consumes less memory.

Legacy

Do you want Polars to run on an old CPU (e.g. dating from before 2011), or on an x86-64 build of Python on Apple Silicon under Rosetta? Install pip install polars-lts-cpu. This version of Polars is compiled without AVX target features.

Sponsors

JetBrains logo

Project details


Release history Release notifications | RSS feed

This version

1.4.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars-1.4.1.tar.gz (3.9 MB view details)

Uploaded Source

Built Distributions

polars-1.4.1-cp38-abi3-win_amd64.whl (31.4 MB view details)

Uploaded CPython 3.8+ Windows x86-64

polars-1.4.1-cp38-abi3-manylinux_2_24_aarch64.whl (28.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

polars-1.4.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31.5 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

polars-1.4.1-cp38-abi3-macosx_11_0_arm64.whl (26.5 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

polars-1.4.1-cp38-abi3-macosx_10_12_x86_64.whl (30.3 MB view details)

Uploaded CPython 3.8+ macOS 10.12+ x86-64

File details

Details for the file polars-1.4.1.tar.gz.

File metadata

  • Download URL: polars-1.4.1.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for polars-1.4.1.tar.gz
Algorithm Hash digest
SHA256 ed8009aff8cf91f94db5a38d947185603ad5bee48a28b764cf5a52048c7c4756
MD5 f16a6e38cb22002e4f5c5bfe86b65d00
BLAKE2b-256 d18ac5501ba25e99b80d7b4ed9e064dc8a5b5e6a8c6529ee72bb63b30f5525fb

See more details on using hashes here.

File details

Details for the file polars-1.4.1-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: polars-1.4.1-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 31.4 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for polars-1.4.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 2313d63ecfa1d9f1e740b9fcabb8ae45d9d0b5acf1ddb401951daba4c0f3f74f
MD5 446b1ca541104104c78cdc31f33433cb
BLAKE2b-256 1895d917d6215ae51a99eb1531c2a3250d272eaefac0d588aa7bd8b370b95468

See more details on using hashes here.

File details

Details for the file polars-1.4.1-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for polars-1.4.1-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 64eabf0ef7ac0d17fe15361e7daaeb4425a875d2d760c17d96803e9ac8bee244
MD5 3f4213935403dfbb874738e717b587cf
BLAKE2b-256 9fe9c7eef50b9e81cef3da9d648ccab11acae852507d0335e8d58c76bf21e4de

See more details on using hashes here.

File details

Details for the file polars-1.4.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for polars-1.4.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cf834a328e292c31c06eb606496becb6d8a795e927c826e26e2af27087950f1
MD5 b2c1d225dbe7cfb1e1b7e1ff2c46c31d
BLAKE2b-256 ef5286e6d9a264d0a5b13f2a813f1efab82fd63151852936c1413195d75ec6ee

See more details on using hashes here.

File details

Details for the file polars-1.4.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for polars-1.4.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd2acd8b1977f61b9587c8d47d16f101e7e73edd8cdeb3a8a725f15f181cd120
MD5 96b8472279c1ba8805434487d655d516
BLAKE2b-256 73c9c26b54d4c96c0fd8955ae0f79f12493788c05f8d7d2af1902eb09b4e67b3

See more details on using hashes here.

File details

Details for the file polars-1.4.1-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for polars-1.4.1-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f02fc6a5c63dd86cfeb159caa66112e477c69fc7800a28e64609ac2780554865
MD5 e2d7d5c097513e896ddefd1ac88f5406
BLAKE2b-256 7a26ca20d7572048a42544703101ccde9a6772ed8dddf19122252e848f2d19a5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page