Fork from polars repository, faster conversions to python. All of this was made possible by the incredible work of ritchie46.
Project description
Documentation: Python - Rust - Node.js | StackOverflow: Python - Rust - Node.js | User Guide | Discord
Polars: Blazingly fast DataFrames in Rust, Python & Node.js
Polars is a blazingly fast DataFrames library implemented in Rust using Apache Arrow Columnar Format as the memory model.
- Lazy | eager execution
- Multi-threaded
- SIMD
- Query optimization
- Powerful expression API
- Hybrid Streaming (larger than RAM datasets)
- Rust | Python | NodeJS | ...
To learn more, read the User Guide.
>>> import polars as pl
>>> df = pl.DataFrame(
... {
... "A": [1, 2, 3, 4, 5],
... "fruits": ["banana", "banana", "apple", "apple", "banana"],
... "B": [5, 4, 3, 2, 1],
... "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
... }
... )
# embarrassingly parallel execution & very expressive query language
>>> df.sort("fruits").select(
... [
... "fruits",
... "cars",
... pl.lit("fruits").alias("literal_string_fruits"),
... pl.col("B").filter(pl.col("cars") == "beetle").sum(),
... pl.col("A").filter(pl.col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),
... pl.col("A").sum().over("fruits").alias("sum_A_by_fruits"),
... pl.col("A").reverse().over("fruits").alias("rev_A_by_fruits"),
... pl.col("A").sort_by("B").over("fruits").alias("sort_A_by_B_by_fruits"),
... ]
... )
shape: (5, 8)
┌──────────┬──────────┬──────────────┬─────┬─────────────┬─────────────┬─────────────┬─────────────┐
│ fruits ┆ cars ┆ literal_stri ┆ B ┆ sum_A_by_ca ┆ sum_A_by_fr ┆ rev_A_by_fr ┆ sort_A_by_B │
│ --- ┆ --- ┆ ng_fruits ┆ --- ┆ rs ┆ uits ┆ uits ┆ _by_fruits │
│ str ┆ str ┆ --- ┆ i64 ┆ --- ┆ --- ┆ --- ┆ --- │
│ ┆ ┆ str ┆ ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════════╪══════════╪══════════════╪═════╪═════════════╪═════════════╪═════════════╪═════════════╡
│ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 4 ┆ 4 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "apple" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 7 ┆ 3 ┆ 3 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 5 ┆ 5 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "audi" ┆ "fruits" ┆ 11 ┆ 2 ┆ 8 ┆ 2 ┆ 2 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ "banana" ┆ "beetle" ┆ "fruits" ┆ 11 ┆ 4 ┆ 8 ┆ 1 ┆ 1 │
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘
Performance 🚀🚀
Polars is very fast. In fact, it is one of the best performing solutions available. See the results in h2oai's db-benchmark.
In the TPCH benchmarks polars is orders of magnitudes faster than pandas, dask, modin and vaex on full queries (including IO).
Besides fast, polars is also very lightweight. It comes with zero required dependencies, and this shows in the import times:
import time measurements:
- polars: 70ms
- numpy: 104ms
- pandas: 520ms
Python setup
Install the latest polars version with:
pip install polars
We also have a conda package (conda install polars
), however pip is the preferred way to install Polars.
Install Polars with all optional dependencies.
pip install 'polars[all]'
pip install 'polars[numpy,pandas,pyarrow]' # install a subset of all optional dependencies
You can also install the dependencies directly.
Tag | Description |
---|---|
all | Install all optional dependencies (all of the following) |
pandas | Install with Pandas for converting data to and from Pandas Dataframes/Series |
numpy | Install with numpy for converting data to and from numpy arrays |
pyarrow | Reading data formats using PyArrow |
fsspec | Support for reading from remote file systems |
connectorx | Support for reading from SQL databases |
xlsx2csv | Support for reading from Excel files |
timezone | Timezone support, only needed if 1. you are on Python < 3.9 and/or 2. you are on Windows, otherwise no dependencies will be installed |
Releases happen quite often (weekly / every few days) at the moment, so updating polars regularly to get the latest bugfixes / features might not be a bad idea.
Rust setup
You can take latest release from crates.io
, or if you want to use the latest features / performance improvements
point to the master
branch of this repo.
polars = { git = "https://github.com/pola-rs/polars", rev = "<optional git tag>" }
Rust version
Required Rust version >=1.58
Documentation
Want to know about all the features Polars supports? Read the docs!
Larger than RAM data
If you have data that does not fit into memory, polars lazy is able to process your query (or parts of your query) in a
streaming fashion, this drastically reduces memory requirements you might be able to process your 250GB dataset on your
laptop. Collect with collect(allow_streaming=True)
to run the query streaming. (This might be a little slower, but
it is still very fast!)
Python
- Installation guide:
pip install polars
- Python documentation
- User guide
Rust
Node
- Installation guide:
yarn add nodejs-polars
- Node documentation
- User guide
- Github
Contribution
Want to contribute? Read our contribution guideline.
[Python]: compile polars from source
If you want a bleeding edge release or maximal performance you should compile polars from source.
This can be done by going through the following steps in sequence:
- Install the latest Rust compiler
- Install maturin:
pip install maturin
- Choose any of:
- Fastest binary, very long compile times:
$ cd py-polars && maturin develop --release -- -C target-cpu=native
- Fast binary, Shorter compile times:
$ cd py-polars && maturin develop --release -- -C codegen-units=16 -C lto=thin -C target-cpu=native
- Fastest binary, very long compile times:
Note that the Rust crate implementing the Python bindings is called py-polars
to distinguish from the wrapped
Rust crate polars
itself. However, both the Python package and the Python module are named polars
, so you
can pip install polars
and import polars
.
Arrow2
Polars has transitioned to arrow2. Arrow2 is a faster and safer implementation of the Apache Arrow Columnar Format. Arrow2 also has a more granular code base, helping to reduce the compiler bloat.
Use custom Rust function in python?
See this example.
Going big...
Do you expect more than 2^32
~4,2 billion rows? Compile polars with the bigidx
feature flag.
Or for python users install pip install polars-u64-idx
.
Don't use this unless you hit the row boundary as the default polars is faster and consumes less memory.
Legacy
Do you want polars to run on an old CPU (e.g. dating from before 2011)? Install pip polars-lts-cpu
. This polars project is
compiled without avx target features.
Acknowledgements
Development of Polars is proudly powered by
Sponsors
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file polarscnj-1.0.21-cp311-cp311-manylinux_2_31_x86_64.whl
.
File metadata
- Download URL: polarscnj-1.0.21-cp311-cp311-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 17.8 MB
- Tags: CPython 3.11, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a217842dd91a5ed9656c6f0e5e1dc4c805ff5150a2dbce4586f1e796890f9c5c |
|
MD5 | d9378946efd19efe9bd6c570e0917f7d |
|
BLAKE2b-256 | 319d1334911b6683eb57350d31adb973bfedf70fb06f758850fe260a46280b2a |
File details
Details for the file polarscnj-1.0.21-cp310-cp310-manylinux_2_31_x86_64.whl
.
File metadata
- Download URL: polarscnj-1.0.21-cp310-cp310-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 17.8 MB
- Tags: CPython 3.10, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35a65d5dc27fc0048d8ab5b3caed85f968730511ed4b733a75a8d713a99fdccb |
|
MD5 | bf87948931b9289bf15ff148809451a3 |
|
BLAKE2b-256 | b6887dc9efd00ecdb96bbd1e631ddbb9e086e2c53244509d2a437e1376c6e773 |
File details
Details for the file polarscnj-1.0.21-cp38-cp38-manylinux_2_31_x86_64.whl
.
File metadata
- Download URL: polarscnj-1.0.21-cp38-cp38-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 17.8 MB
- Tags: CPython 3.8, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: maturin/0.13.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0be5e21e37f2a8f496b9f1a296c6ebe520b87175a68d4703bd269a53b83ff57b |
|
MD5 | 9a9c8247a3cf9e1b401815cfcb94fcd6 |
|
BLAKE2b-256 | b6965a88909c35198524fcbadd170cb0e298090e9602775857195c6f51fe29f2 |