Skip to main content

A package for processing Polarimetric Synthetic Aperture Radar (PolSAR) data.

Project description

PolSARtools PyPI package (beta version!)

Downloads Documentation Status Hits License: GPL 3.0 Open Source Love svg1 made-with-python

Cite: Bhogapurapu, N., Dey, S., Mandal, D., Bhattacharya, A. and Rao, Y.S., 2021. PolSAR tools: A QGIS plugin for generating SAR descriptors. Journal of Open Source Software, 6(60), p.2970. doi: 10.21105/joss.02970

Installation

pip install polsartools

Prerequesites

gdal, Numpy

gdal installation error fix

conda install -c conda-forge gdal

Example

import polsartools as pst

T3_folder = r'../T3'
windows_size=3

pst.polsar.fp.mf4cf(T3_folder,window_size=window_size)

ps,pd,pv,pc,tfp,taufp = pst.polsar.fp.mf4cf(T3_folder,window_size=window_size,write_flag=False)

sample use case is provided in tests

Available functionalities:


  • Full-pol :

    • Model free 4-Component decomposition for full-pol data (MF4CF)[11]
    • Model free 3-Component decomposition for full-pol data (MF3CF)[4]
    • Radar Vegetation Index (RVI) [8]
    • Generalized volume Radar Vegetation Index (GRVI) [2]
    • Polarimetric Radar Vegetation Index (PRVI) [1]
    • Degree of Polarization (DOP) [10]
  • Compact-pol :

    • Model free 3-Component decomposition for compact-pol data (MF3CC) [4]
    • Improved S-Omega decomposition for compact-pol data (iS-Omega) [7]
    • Compact-pol Radar Vegetation Index (CpRVI) [6]
    • Degree of Polarization (DOP) [10]
  • Dual-pol:

    • Dual-pol Radar Vegetation Index (DpRVI) [5]
    • Dual-pol Radar Vegetation Index for GRD data (DpRVIc) [12]
      • Radar Vegetation Index (RVI) [9]
    • Degree of Polarization (DOP) [10]
    • Polarimetric Radar Vegetation Index (PRVI) [1]
    • Dual-pol descriptors [13]

Contributions

  1. Contribute to the software

    Contribution guidelines for this project

  2. Report issues or problems with the software

    Please raise your issues here : https://github.com/Narayana-Rao/polsartools/issues

  3. Seek support

    Please write to us: bnarayanarao@iitb.ac.in

References


[1] Chang, J.G., Shoshany, M. and Oh, Y., 2018. Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems. IEEE Transactions on Geoscience and Remote Sensing, 56(12), pp.7102-7108.

[2] Ratha, D., Mandal, D., Kumar, V., McNairn, H., Bhattacharya, A. and Frery, A.C., 2019. A generalized volume scattering model-based vegetation index from polarimetric SAR data. IEEE Geoscience and Remote Sensing Letters, 16(11), pp.1791-1795.

[3] Mandal, D., Kumar, V., Ratha, D., J. M. Lopez-Sanchez, A. Bhattacharya, H. McNairn, Y. S. Rao, and K. V. Ramana, 2020. Assessment of rice growth conditions in a semi-arid region of India using the Generalized Radar Vegetation Index derived from RADARSAT-2 polarimetric SAR data, Remote Sensing of Environment, 237: 111561.

[4] Dey, S., Bhattacharya, A., Ratha, D., Mandal, D. and Frery, A.C., 2020. Target Characterization and Scattering Power Decomposition for Full and Compact Polarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing.

[5] Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J.M., McNairn, H. and Rao, Y.S., 2020. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sensing of Environment, 247, p.111954.

[6] Mandal, D., Ratha, D., Bhattacharya, A., Kumar, V., McNairn, H., Rao, Y.S. and Frery, A.C., 2020. A Radar Vegetation Index for Crop Monitoring Using Compact Polarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing, 58 (9), pp. 6321-6335.

[7] V. Kumar, D. Mandal, A. Bhattacharya, and Y. S. Rao, 2020. Crop Characterization Using an Improved Scattering Power Decomposition Technique for Compact Polarimetric SAR Data. International Journal of Applied Earth Observations and Geoinformation, 88: 102052.

[8] Kim, Y. and van Zyl, J.J., 2009. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), pp.2519-2527.

[9] Trudel, M., Charbonneau, F. and Leconte, R., 2012. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Canadian Journal of Remote Sensing, 38(4), pp.514-527.

[10] Barakat, R., 1977. Degree of polarization and the principal idempotents of the coherency matrix. Optics Communications, 23(2), pp.147-150.

[11] S. Dey, A. Bhattacharya, A. C. Frery, C. Lopez-Martinez and Y. S. Rao, "A Model-free Four Component Scattering Power Decomposition for Polarimetric SAR Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021. doi: 10.1109/JSTARS.2021.3069299.

[12] Bhogapurapu, N., Dey, S., Mandal, D., Bhattacharya, A., Karthikeyan, L., McNairn, H. and Rao, Y.S., 2022. Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data. Remote Sensing of Environment, 271, p.112900.

[13]Bhogapurapu, N., Dey, S., Bhattacharya, A., Mandal, D., Lopez-Sanchez, J.M., McNairn, H., López-Martínez, C. and Rao, Y.S., 2021. Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 178, pp.20-35.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polsartools-0.4.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

polsartools-0.4-py3-none-any.whl (42.7 kB view details)

Uploaded Python 3

File details

Details for the file polsartools-0.4.tar.gz.

File metadata

  • Download URL: polsartools-0.4.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for polsartools-0.4.tar.gz
Algorithm Hash digest
SHA256 38f6648e97d0964cc33ef2149af8e75375d17fc115995ee602e10597fedbf6b5
MD5 782e5df210ff5cd184f5c707c3ff09c8
BLAKE2b-256 f165957a418870afd0c2168a2e9cdf00b10d9b14595bea951a9261b41f59f3a6

See more details on using hashes here.

File details

Details for the file polsartools-0.4-py3-none-any.whl.

File metadata

  • Download URL: polsartools-0.4-py3-none-any.whl
  • Upload date:
  • Size: 42.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for polsartools-0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6a2fe0d2427f35b444ff724c324aedb43f083fa049355d01e367bfeb146274e5
MD5 212e42efc10ff4feded1d1caaf5eab4d
BLAKE2b-256 cfab0289c5f8e6773a1e9bed3a1860d4fdb9831c783200740922cd8c2baa4dcb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page