Efficiently sample from the Polya-Gamma distribution using NumPy's Generator interface
Project description
polya-gamma
Efficiently sample from the Polya-Gamma distribution using NumPy's Generator interface.
Dependencies
- Numpy >= 1.17
Installation
$ pip install -U polyagamma
Example
polyagamma
can act as a drop-in replacement for numpy's Generator class.
import numpy as np
from polyagamma import default_rng, Generator
g = Generator(np.random.PCG64()) # or use default_rng()
print(g.polyagamma())
# Get a 5 by 10 array of PG(1, 2) variates.
print(g.polyagamma(z=2, size=(5, 10)))
# Pass sequences as input. Numpy's broadcasting semantics apply here.
h = [[1, 2, 3, 4, 5], [9, 8, 7, 6, 5]]
print(g.polyagamma(h, 1))
# Pass an output array
out = np.empty(5)
g.polyagamma(out=out)
print(out)
# other numpy distributions are still accessible
print(g.standard_normal())
print(g.standard_gamma())
TODO
Add devroye and gamma convolution methods.- Add the "alternative" sampling method.
- Add the "saddle point approximation" method.
- Add the hybrid sampler based on all four methods.
Add array broadcasting support for paramater inputs.
References
- Polson, Nicholas G., James G. Scott, and Jesse Windle. "Bayesian inference for logistic models using Pólya–Gamma latent variables." Journal of the American statistical Association 108.504 (2013): 1339-1349.
- J. Windle, N. G. Polson, and J. G. Scott. "Improved Polya-gamma sampling". Technical Report, University of Texas at Austin, 2013b.
- Windle, Jesse, Nicholas G. Polson, and James G. Scott. "Sampling Polya-Gamma random variates: alternate and approximate techniques." arXiv preprint arXiv:1405.0506 (2014)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
polyagamma-0.1.0a4.tar.gz
(130.0 kB
view details)
File details
Details for the file polyagamma-0.1.0a4.tar.gz
.
File metadata
- Download URL: polyagamma-0.1.0a4.tar.gz
- Upload date:
- Size: 130.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 23daf867ed79208d673c71cfc76249af60588452723630ae91f2edabc1e0c0ab |
|
MD5 | 112d5b7505f7879931fa03a2dd9d4cc6 |
|
BLAKE2b-256 | ba7bd45e3f34a4938e89d714377978d787e2d493bf1037abd2c519ceb635f633 |