Pool Resources
Project description
Pool Resources
Description
Library to generalize multiprocessing.Pool(n: int)
to handle generic resources.
First class support for torch devices as a generic resource.
Example for n torch GPUs and k torch Modules
from pool_resources import PoolResources
from pool_resources.resources import TorchResource
class Model(nn.Module):
def __init__(self, input_shape, output_shape):
super().__init__()
self.fc = nn.Linear(input_shape, output_shape)
def forward(self, x):
return self.fc(x)
def forward_fn(item):
model, data = item
return model.forward(data)
modules = [Model(input_shape=20, output_shape=30) for _ in range(k)]
data = tr.randn(k, B, 20)
seq = zip(modules, data)
resources = [TorchResource(f"cuda:{i}") for i in range(n)]
res_sequential = list(map(forward_fn, seq))
res_parallel = PoolResources(resources).map(forward_fn, seq)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pool-resources-0.3.0.tar.gz
(6.1 kB
view details)
File details
Details for the file pool-resources-0.3.0.tar.gz
.
File metadata
- Download URL: pool-resources-0.3.0.tar.gz
- Upload date:
- Size: 6.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8512e2424536797a84bd7b9fd9802cc50fc9aa952d38f0437332d9cd7152b6cb |
|
MD5 | d77cc5e4e77da1533095c5b80f23ce4b |
|
BLAKE2b-256 | afc0674fbc0a3ca7df7ac5cba7ca8262e4332b172f10dcbfbf5faa9a1a5809da |