Python package to analyze the results of pooled CRISPR screens
Project description
poola
Python package for pooled screen analysis
Install
Install from github:
pip install git+git://github.com/gpp-rnd/poola.git#egg=poola
How to use
Additional packages required for this tutorial can be install using pip install -r requirements.txt
from poola import core as pool
import pandas as pd
import seaborn as sns
import gpplot
import matplotlib.pyplot as plt
import requests
To demonstrate the functionality of this module we'll use read counts from Sanson et al. 2018.
supp_reads = 'https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-018-07901-8/MediaObjects/41467_2018_7901_MOESM4_ESM.xlsx'
read_counts = pd.read_excel(supp_reads,
sheet_name = 'A375_orig_tracr raw reads',
header = None,
skiprows = 3,
names = ['sgRNA Sequence', 'pDNA', 'A375_RepA', 'A375_RepB'],
engine='openpyxl')
guide_annotations = pd.read_excel(supp_reads,
sheet_name='sgRNA annotations',
engine='openpyxl')
The input data has three columns with read counts and one column with sgRNA annotations
read_counts.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 77441 entries, 0 to 77440
Data columns (total 4 columns):
# Column Dtype
--- ------ -----
0 sgRNA Sequence object
1 pDNA int64
2 A375_RepA int64
3 A375_RepB int64
dtypes: int64(3), object(1)
lognorms = pool.lognorm_columns(reads_df=read_counts, columns=['pDNA', 'A375_RepA', 'A375_RepB'])
filtered_lognorms = pool.filter_pdna(lognorm_df=lognorms, pdna_cols=['pDNA'])
print('Filtered ' + str(lognorms.shape[0] - filtered_lognorms.shape[0]) + ' columns due to low pDNA abundance')
Filtered 576 columns due to low pDNA abundance
Note that the column names for the lognorms remain the same
lognorms.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 77441 entries, 0 to 77440
Data columns (total 4 columns):
# Column Dtype
--- ------ -----
0 sgRNA Sequence object
1 pDNA float64
2 A375_RepA float64
3 A375_RepB float64
dtypes: float64(3), object(1)
lfc_df = pool.calculate_lfcs(lognorm_df=filtered_lognorms, ref_col='pDNA', target_cols=['A375_RepA', 'A375_RepB'])
We drop the pDNA column after calculating log-fold changes
lfc_df.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 76865 entries, 0 to 77440
Data columns (total 3 columns):
# Column Dtype
--- ------ -----
0 sgRNA Sequence object
1 A375_RepA float64
2 A375_RepB float64
dtypes: float64(2), object(1)
Since we only have two conditions it's easy to visualize replicates as a point densityplot using gpplot
plt.subplots(figsize=(4,4))
gpplot.point_densityplot(data=lfc_df, x='A375_RepA', y='A375_RepB')
gpplot.add_correlation(data=lfc_df, x='A375_RepA', y='A375_RepB')
sns.despine()
Since we see a strong correlation, we'll average the log-fold change of each sgRNA across replicates
avg_replicate_lfc_df = pool.average_replicate_lfcs(lfcs=lfc_df, guide_col='sgRNA Sequence', condition_indices=[0])
After averaging log-fold changes our dataframe is melted, so the condition column specifies the experimental condition (A375 here) and the n_obs specfies the number of replicates
avg_replicate_lfc_df.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 76865 entries, 0 to 76864
Data columns (total 4 columns):
# Column Dtype
--- ------ -----
0 sgRNA Sequence object
1 condition object
2 avg_lfc float64
3 n_obs int64
dtypes: float64(1), int64(1), object(2)
Before combining sgRNAs at the gene level, it's sometimes helpful to group controls into pseudo-genes so they're easier to compare with target genes. Our annotation file maps from sgRNA sequences to gene symbols
remapped_annotations = pool.group_pseudogenes(annotations=guide_annotations, pseudogene_size=4,
gene_col='Annotated Gene Symbol',
control_regex=['NO_CURRENT'])
remapped_annotations.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 77441 entries, 0 to 77440
Data columns (total 3 columns):
# Column Dtype
--- ------ -----
0 sgRNA Sequence object
1 Annotated Gene Symbol object
2 Annotated Gene ID object
dtypes: object(3)
Using this reamapped annotations file, we'll average log-fold changes for each gene
gene_lfcs = pool.average_gene_lfcs(lfcs=avg_replicate_lfc_df, annotations=remapped_annotations, gene_col='Annotated Gene Symbol',
merge_on='sgRNA Sequence', controls_to_z='NO_CURRENT')
The controls_to_z
can be used which to specify which genes to use as a null distribution when z-scoring log-fold changes
gene_lfcs.info(memory_usage=False, null_counts=False)
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19363 entries, 0 to 19362
Data columns (total 7 columns):
# Column Dtype
--- ------ -----
0 condition object
1 Annotated Gene Symbol object
2 avg_lfc float64
3 n_obs int64
4 ctl_mean float64
5 ctl_sd float64
6 avg_lfc_z-score float64
dtypes: float64(4), int64(1), object(2)
Finally, to evaluate the quality this screen, we'll calculate the ROC-AUC between essential and nonessential genes for each condition
noness_file = "https://www.embopress.org/action/downloadSupplement?doi=10.15252%2Fmsb.20145216&file=msb145216-sup-0001-DatasetS1.xlsx"
noness_genes = (pd.read_excel(requests.get(noness_file).content, sheet_name='ReferenceSets',
usecols=['Nonessential Genes (NE)'], engine='openpyxl')
.rename({'Nonessential Genes (NE)': 'gene'}, axis=1))
ess_file = 'http://tko.ccbr.utoronto.ca/Data/core-essential-genes-sym_HGNCID'
ess_genes = pd.read_table(ess_file, names=['gene', 'gene_id'])
/Users/pdeweird/.local/share/virtualenvs/poola-tuJn2lJU/lib/python3.6/site-packages/openpyxl/worksheet/_reader.py:308: UserWarning: Unknown extension is not supported and will be removed
warn(msg)
roc_aucs = pool.get_roc_aucs(lfcs=gene_lfcs, tp_genes=ess_genes.gene, fp_genes=noness_genes.gene,
gene_col='Annotated Gene Symbol', score_col='avg_lfc', group_col='condition')
print('ROC-AUC: ' + str(round(roc_aucs['ROC-AUC'].values[0], 3)))
ROC-AUC: 0.976
Note that we can also use this function to calculate roc-aucs at the guide level
annotated_guide_lfcs = lfc_df.merge(guide_annotations, how='inner', on='sgRNA Sequence')
roc_aucs = pool.get_roc_aucs(lfcs=annotated_guide_lfcs, tp_genes=ess_genes.gene, fp_genes=noness_genes.gene, gene_col='Annotated Gene Symbol',
conditions=['A375_RepA', 'A375_RepB'])
print('Rep A AUC: ' + str(round(roc_aucs.loc[roc_aucs.condition == 'A375_RepA', 'ROC-AUC'].values[0], 4)))
print('Rep B AUC: ' + str(round(roc_aucs.loc[roc_aucs.condition == 'A375_RepB', 'ROC-AUC'].values[0], 4)))
Rep A AUC: 0.9183
Rep B AUC: 0.9176
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.