Skip to main content

SpiceMix: a probabilistic graphical model for spatial transcriptomics data

Project description

SpiceMix

overview

SpiceMix is an unsupervised tool for analyzing data of the spatial transcriptome. SpiceMix models the observed expression of genes within a cell as a mixture of latent factors. These factors are assumed to have some spatial affinity between neighboring cells. The factors and affinities are not known a priori, but are learned by SpiceMix directly from the data, by an alternating optimization method that seeks to maximize their posterior probability given the observed gene expression. In this way, SpiceMix learns a more expressive representation of the identity of cells from their spatial transcriptome data than other available methods.

SpiceMix can be applied to any type of spatial transcriptomics data, including MERFISH, seqFISH, HDST, and Slide-seq.

Install

pip install spicemix

Usage

from pathlib import Path

import anndata as ad
import torch

from spicemix.model import SpiceMixPlus

# Load datasets
datasets = []
replicate_names = []
for fov in range(5):
    dataset = ad.read_h5ad(f"./example_st_dataset_fov_{replicate}.h5ad") # Each dataset must have spatial information stored as an adjacency matrix
    name = f"{fov}"
    datasets.append(dataset)
    replicate_names.append(name)

# Define hyperparameters
K = 20 # Number of metagenes
lambda_Sigma_x_inv = 1e-4 # Spatial affinity regularization hyperparameter
torch_context = dict(device='cuda:0', dtype=torch.float32) # Context for PyTorch tensor instantiation 

# Initialize
spicemixplus_demo = SpiceMixPlus(
    K=K,
    datasets=datasets,
    lambda_Sigma_x_inv=lambda_Sigma_x_inv,
    torch_context=torch_context
)
    
# Train

## Initialization with NMF
for iteration in range(10):
    spicemixplus_demo.estimate_parameters(update_spatial_affinities=False)
    spicemixplus_demo.estimate_weights(use_neighbors=False)

## Using spatial information
num_iterations = 200
for iteration in range(num_iterations):
    spicemixplus_demo.estimate_parameters()
    spicemixplus_demo.estimate_weights()

# Save to disk
result_filepath = Path(f"./demo_{num_iterations}_iterations.h5ad")
spicemixplus_demo.save_results(result_filepath)
    
# Plot results

...

Tests

To run the provided tests and ensure that SpiceMix can run on your platform, follow the instructions below:

  • Download this repo.
git clone https://github.com/alam-shahul/SpiceMixPlus.git
  • Install pytest in your environment.
pip install pytest
  • Navigate to the root directory of this repo.
  • Run the following command. With GPU resources, this test should execute without errors in ~2.5 minutes:
python -m pytest -s tests/test_spicemix_shared.py

Cite

Cite our paper:

@article{chidester2020spicemix,
  title={SPICEMIX: Integrative single-cell spatial modeling for inferring cell identity},
  author={Chidester, Benjamin and Zhou, Tianming and Ma, Jian},
  journal={bioRxiv},
  year={2020},
  publisher={Cold Spring Harbor Laboratory}
}

paper

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

popari-0.0.20.tar.gz (45.7 kB view details)

Uploaded Source

Built Distribution

popari-0.0.20-py3-none-any.whl (53.5 kB view details)

Uploaded Python 3

File details

Details for the file popari-0.0.20.tar.gz.

File metadata

  • Download URL: popari-0.0.20.tar.gz
  • Upload date:
  • Size: 45.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.0

File hashes

Hashes for popari-0.0.20.tar.gz
Algorithm Hash digest
SHA256 ba2bf4a5df526ecbf40331c5a0b62708fcab88ee853f03da6f51d10da2080576
MD5 442e3a0dd50e5b98055b2438f3bbef24
BLAKE2b-256 d580eb5623d58663933441a9f3f1e726a3cb77aab81ca30ff561951efd79e50c

See more details on using hashes here.

File details

Details for the file popari-0.0.20-py3-none-any.whl.

File metadata

  • Download URL: popari-0.0.20-py3-none-any.whl
  • Upload date:
  • Size: 53.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.0

File hashes

Hashes for popari-0.0.20-py3-none-any.whl
Algorithm Hash digest
SHA256 094bfed264a22f3730952b37d6ad998e53552fe1883bbe69fb88d8d6ec0af695
MD5 c2fcb3b72ee496c53f33a6f478d5a642
BLAKE2b-256 f1f8042f992494296def4121e85d8f300bb7f33fbf3e5ce11a9b8bcce46e787d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page