Long-term forecasts for pathogen populations
Project description
popcast: Long-term forecasts for pathogen populations
See the methods of Huddleston et al. 2020 for more details or to cite this tool.
Install
python3 -m pip install popcast
Usage
Download seasonal influenza A/H3N2 data for model fitting.
curl -LO "https://github.com/blab/flu-forecasting/raw/master/results/builds/natural/natural_sample_1_with_90_vpm_sliding/tip_attributes_with_weighted_distances.tsv"
Fit a model using default 6 year training windows and 12-month forecasts.
popcast fit \
--tip-attributes tip_attributes_with_weighted_distances.tsv \
--output lbi_model.json \
--predictors lbi
Development
Install locally
python3 -m pip install ".[test]"
Lint and run tests
Lint code.
flake8 . --count --show-source --statistics
Run tests.
cram --shell=/bin/bash tests/
Publish
Install or upgrade publishing tools.
python3 -m pip install --upgrade build twine
Build the distribution packages.
python3 -m build
Upload the distribution packages.
python3 -m twine upload dist/*
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
popcast-1.1.0.tar.gz
(20.9 kB
view details)
Built Distribution
popcast-1.1.0-py3-none-any.whl
(23.6 kB
view details)
File details
Details for the file popcast-1.1.0.tar.gz
.
File metadata
- Download URL: popcast-1.1.0.tar.gz
- Upload date:
- Size: 20.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47732f2ef8225bdda4b1211fb10d38c2235f88e9ff8c875b5308cbeca54798da |
|
MD5 | 069f84b772135732a99fa08cd6d58b58 |
|
BLAKE2b-256 | 83728ca823c7efe712d08161665da94acf7f53ed611d4a1fae4abfb3443265c8 |
Provenance
File details
Details for the file popcast-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: popcast-1.1.0-py3-none-any.whl
- Upload date:
- Size: 23.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb49bbfe9af558c34b68f93ac48fbd035bc0e71faa8103f2b0e81055d76135c3 |
|
MD5 | 94dc3a12353137b442c16e189f3322ac |
|
BLAKE2b-256 | a4c99df38047f33fa11bbd9d5f9ec5349faae406b86e217940a4a11fcd8cc5c8 |