A population projection engine
Project description
popro
A population projection engine
Free software: MIT license
Documentation: https://popro.readthedocs.io.
Features
- Calculates population projection segmented by age over the years
- Methodology:
Presented by the Special Activities Board of the Court of Auditors of the State of Santa Catarina (Brazil), in the technical note Memo. DAE n° 020/2021.
- Overview:
- Inputs:
Specific year census dataset (place, age, population)
Dataset of people born over the years (year, place, births)
Projected population dataset not segmented by age over the years (year, place, population)
- Output:
Population projection segmented by age dataset (year, place, age, population)
Errors report on combination of “place, age, year” unable to forecast (year, place, age, error_msg)
Usage
First let’s generate Input CSV files to serve as a sample.
import csv
def write_csv(file_path, list_data):
with open(file_path, 'w', encoding='UTF8', newline='') as f:
writer = csv.writer(f)
for line in list_data:
writer.writerow(line)
data_birth = [['births', 'place', 'year'],
[102,'ny',2011],
[116,'ny',2012],
[94,'ny',2013],
[123,'ny',2014],
[156,'ny',2015]]
data_census = [['age', 'population', 'place', 'year'],
[0, 100, 'ny', 2010],
[1, 110, 'ny', 2010],
[2, 105, 'ny', 2010],
[3, 102, 'ny', 2010]]
data_population = [['population', 'place', 'year'],
[2010, 'ny', 2010],
[2100, 'ny', 2011],
[2050, 'ny', 2012],
[2040, 'ny', 2013],
[2090, 'ny', 2014],
[1950, 'ny', 2015]]
write_csv(file_path='births.csv', list_data=data_birth)
write_csv(file_path='census.csv', list_data=data_census)
write_csv(file_path='population.csv', list_data=data_population)
Now let’s import the lib Popro and generate our projection engine.
from popro import popro
dict_input = {'path_census': 'census.csv', 'path_births': 'births.csv', 'path_population': 'population.csv', 'year_census': 2010}
engine = popro.Popro(dict_input)
We are ready! Let’s start by doing some punctual projections of year, age and place.
First we will try with an age and year whose birth of the group is prior to the census.
engine.project(year=2012, place='ny', age=3, verbose=True)
pop_ny_2010_age_1 * (pop_ny_2012 / pop_ny_2010)
110 * (2050 / 2010)
112.18905472636816
Now let’s find out the projection for a group born after the census.
engine.project(year=2015, place='ny', age=4, verbose=True)
birth_ny_year_2011 * (pop_ny_2015 / pop_ny_2011)
102 * (1950 / 2100)
94.71428571428572
Finally we will generate a report with all possible combinations of year, age and place.
engine.project_all()
[{'year': 2011, 'place': 'ny', 'age': 0, 'quantity': 102.0},
{'year': 2011, 'place': 'ny', 'age': 1, 'quantity': 104.4776119402985},
{'year': 2011, 'place': 'ny', 'age': 2, 'quantity': 114.92537313432835},
{'year': 2011, 'place': 'ny', 'age': 3, 'quantity': 109.70149253731343},
{'year': 2012, 'place': 'ny', 'age': 0, 'quantity': 116.0},
{'year': 2012, 'place': 'ny', 'age': 1, 'quantity': 99.57142857142857},
{'year': 2012, 'place': 'ny', 'age': 2, 'quantity': 101.99004975124377},
{'year': 2012, 'place': 'ny', 'age': 3, 'quantity': 112.18905472636816},
{'year': 2013, 'place': 'ny', 'age': 0, 'quantity': 94.0},
{'year': 2013, 'place': 'ny', 'age': 1, 'quantity': 115.43414634146342},
{'year': 2013, 'place': 'ny', 'age': 2, 'quantity': 99.08571428571429},
{'year': 2013, 'place': 'ny', 'age': 3, 'quantity': 101.49253731343283},
{'year': 2014, 'place': 'ny', 'age': 0, 'quantity': 123.0},
{'year': 2014, 'place': 'ny', 'age': 1, 'quantity': 96.30392156862744},
{'year': 2014, 'place': 'ny', 'age': 2, 'quantity': 118.26341463414634},
{'year': 2014, 'place': 'ny', 'age': 3, 'quantity': 101.51428571428572},
{'year': 2015, 'place': 'ny', 'age': 0, 'quantity': 156.0},
{'year': 2015, 'place': 'ny', 'age': 1, 'quantity': 114.76076555023923},
{'year': 2015, 'place': 'ny', 'age': 2, 'quantity': 89.8529411764706},
{'year': 2015, 'place': 'ny', 'age': 3, 'quantity': 110.34146341463415}]
Cool, but it would be better to export to a CSV, wouldn’t it?
engine.project_all(output_report_projection_path='projection_report.csv')
Report generated!
CLI
It is also possible to make projections via command line. Let’s repeat the same projections:
$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --year 2012 --place ny --age 3
112.18905472636816
$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --year 2015 --place ny --age 4
94.71428571428572
$ popro -i path_census,census.csv -i path_births,births.csv -i path_population,population.csv -i year_census,2010 --output projection_report.csv
History
0.1.0 (2022-04-27)
First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file popro-0.1.1.tar.gz
.
File metadata
- Download URL: popro-0.1.1.tar.gz
- Upload date:
- Size: 1.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09c60e93166aec5b53507da4b00951701572547c7b683c3c498896b61a46c6b4 |
|
MD5 | cceacad19837f69bb4daa370313052e8 |
|
BLAKE2b-256 | 3e3439160806fbb13911d1c4a01f0134ac80eb528e5f354d255225e77f872486 |
File details
Details for the file popro-0.1.1-py2.py3-none-any.whl
.
File metadata
- Download URL: popro-0.1.1-py2.py3-none-any.whl
- Upload date:
- Size: 10.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66bc49320ba528e7130e69f2826e5171e35e703e6a327f2afb7354d1ee61f27d |
|
MD5 | f82440d2c7bebb0125d084402ee3f203 |
|
BLAKE2b-256 | 61760a85e0b079baff32946ebcb901206b45af5cde4236304c098817ca9fb328 |