Skip to main content

A population synthesis code

Project description

CI codecov Codacy Badge Documentation Status DOI PyPI PyPI - Downloads status

popsynth

alt text

popsynth core function is to create observed surveys from latent population models.

First, let's define what a population of objects is in terms of a generative model. The two main ingredients are the objects' spatial distribution () and the distribution of their inherent properties (). Here, are the latent population parameters, are the spatial locations of the objects, and are the properties of the individual objects (luminosity, spin, viewing angle, mass, etc.). The spatial distribution is defined such that:

is the intensity of objects for a given set of population parameters. With these definitions we can define the probability for an object to have position and properties as

popsynth allows you to specify these spatial and property distributions in an object-oriented way to create surveys. The final ingredient to creating a sample for a survey is knowing how many objects to sample from the population (before any selection effects are applied). Often, we see this number in simulation frameworks presented as "we draw N objects to guarantee we have enough." This is incorrect. A survey takes place over a given period of time () in which observed objects are counted. This is a description of a Poisson process. Thus, the number of objects in a simulation of this survey is a draw from a Poisson distribution:

Thus, popsynth first numerically integrates the spatial distribution to determine the Poisson rate parameter for the given $\vec{\psi}$, then makes a Poisson draw for the number of objects in the population survey. For each object, positions and properties are drawn with arbitrary dependencies between them. Finally, selection functions are applied to either latent or observed (with or without measurement error) properties.

Note: If instead we draw a preset number of objects, as is done in many astrophysical population simulation frameworks, it is equivalent to running a survey up until that specific number of objects is detected. This process is distributed as a negative binomial process, i.e, wait for a number of successes and requires a different statistical framework to compare models to data.

Installation

pip install popsynth

Note: This is not synth pop! If you were looking for some hard driving beats out of a yamaha keyboard with bells... look elsewhere

alt text

Contributing

Contributions to popsynth are always welcome. They can come in the form of:

Bug reports

Please use the Github issue tracking system for any bugs, for questions, and or feature requests.

Code and more distributions

While it is easy to create custom distributions in your local setup, if you would like to add them to popsynth directly, go ahead. Please include tests to ensure that your contributions are compatible with the code and can be maintained in the long term.

Documentation

Additions or examples, tutorials, or better explanations are always welcome. To ensure that the documentation builds with the current version of the software, I am using jupytext to write the documentation in Markdown. These are automatically converted to and executed as jupyter notebooks when changes are pushed to Github.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

popsynth-1.0.6.tar.gz (77.6 kB view details)

Uploaded Source

Built Distribution

popsynth-1.0.6-py3-none-any.whl (78.9 kB view details)

Uploaded Python 3

File details

Details for the file popsynth-1.0.6.tar.gz.

File metadata

  • Download URL: popsynth-1.0.6.tar.gz
  • Upload date:
  • Size: 77.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for popsynth-1.0.6.tar.gz
Algorithm Hash digest
SHA256 23183764c27d671fc9845d434dce899810f80c56e99f7e0267cb2f4876513ca6
MD5 ecffc1405678630e2560750242339630
BLAKE2b-256 9cb31ae8156c7d857dafba44ca01ff2d486d04f6fc35de1269db37a67a0235fa

See more details on using hashes here.

File details

Details for the file popsynth-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: popsynth-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 78.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for popsynth-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 1e37d6f051d247497d77a510ff48366c340ad7648ff17724d35bb1a1812b6fe1
MD5 aa9269dfc0c87bc7cb9a858d3aeceb3f
BLAKE2b-256 60da67ee326e2e5db68198144839a60cf07cbf1471c90527405e09c4461e28f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page