portfolio-backtest is a python library for backtest portfolio asset allocation on Python 3.7 and above.
Project description
portfolio-backtest
portfolio-backtest is a python library for backtest portfolio asset allocation on Python 3.7 and above.
Installation
$ pip install portfolio-backtest
$ pip install PyPortfolioOpt
Usage
basic run
from portfolio_backtest import Backtest
Backtest(tickers=["VTI", "AGG", "GLD"]).run()
advanced run
from portfolio_backtest import Backtest
import pprint
bt = Backtest(
tickers={
"VTI": 0.6,
"AGG": 0.25,
"GLD": 0.15,
},
target_return=0.1,
target_cvar=0.025,
data_dir="data",
start="2011-04-10",
end="2021-04-10",
)
pprint.pprint(bt.run(plot=True))
[{'Annual volatility': '10.9%',
'Conditional Value at Risk': '',
'Cumulative Return': '160.9%',
'Expected annual return': '9.6%',
'Sharpe Ratio': '0.70',
'portfolio': 'Your Portfolio',
'tickers': {'AGG': 0.25, 'GLD': 0.15, 'VTI': 0.6}},
{'Annual volatility': '6.3%',
'Conditional Value at Risk': '',
'Cumulative Return': '102.3%',
'Expected annual return': '7.0%',
'Sharpe Ratio': '0.79',
'portfolio': 'Tangency Portfolio',
'tickers': {'AGG': 0.67099, 'GLD': 0.0, 'VTI': 0.32901}},
{'Annual volatility': '4.3%',
'Conditional Value at Risk': '',
'Cumulative Return': '53.3%',
'Expected annual return': '4.3%',
'Sharpe Ratio': '0.53',
'portfolio': 'Minimum Variance Portfolio',
'tickers': {'AGG': 0.91939, 'GLD': 0.00525, 'VTI': 0.07536}},
{'Annual volatility': '4.0%',
'Conditional Value at Risk': '',
'Cumulative Return': '48.7%',
'Expected annual return': '4.1%',
'Sharpe Ratio': '0.51',
'portfolio': 'Hierarchical Risk Parity Portfolio',
'tickers': {'AGG': 0.89041, 'GLD': 0.05695, 'VTI': 0.05263}},
{'Annual volatility': '',
'Conditional Value at Risk': '0.5%',
'Cumulative Return': '52.1%',
'Expected annual return': '4.2%',
'Sharpe Ratio': '',
'portfolio': 'Minimum CVaR Portfolio',
'tickers': {'AGG': 0.93215, 'GLD': 0.0, 'VTI': 0.06785}},
{'Annual volatility': '7.7%',
'Conditional Value at Risk': '',
'Cumulative Return': '166.5%',
'Expected annual return': '10.0%',
'Sharpe Ratio': '1.04',
'portfolio': 'Semi Variance Portfolio (target return 10.0%)',
'tickers': {'AGG': 0.39504, 'GLD': 0.0, 'VTI': 0.60496}},
{'Annual volatility': '',
'Conditional Value at Risk': '2.5%',
'Cumulative Return': '251.3%',
'Expected annual return': '13.3%',
'Sharpe Ratio': '',
'portfolio': 'Return Maximize CVaR Portfolio (target CVaR 2.5%)',
'tickers': {'AGG': 0.08851, 'GLD': 0.0, 'VTI': 0.91149}}]
Provides a method (discrete_allocation) that can be converted into an actual allocation available for purchase by entering the latest price and desired portfolio size ($ 10,000 in this example)
from portfolio_backtest import Backtest
bt = Backtest(
tickers={
"VTI": 0.6,
"AGG": 0.25,
"GLD": 0.15,
}
)
print(bt.discrete_allocation(total_portfolio_value=10000))
{'Discrete allocation': {'VTI': 28, 'AGG': 21, 'GLD': 9}, 'Funds remaining': '$109.45'}
Supported Portfolio
- Your Portfolio
- Hierarchical Risk Parity Portfolio
- Tangency Portfolio
- Minimum Variance Portfolio
- Minimum CVaR Portfolio
- Semi Variance Portfolio
- Return Maximize CVaR Portfolio
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for portfolio_backtest-0.3.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f326fc7364d0aba475a481f417e9d68692d1c0ea80bb2c2963bc8a3fbe17a301 |
|
MD5 | 138c64f89c1ae27e285b129383732eba |
|
BLAKE2b-256 | a5e28ba876c7438572647808434a290c6eda48acebe39428689da257d28633ca |