Tool to help find an optimal portfolio allocation
Project description
Porfolio Finder
A Python library, based primarily around pandas, to identify an optimal portfolio allocation through back-testing.
API Documentation is available on Read the Docs.
Example Usage
Each of these examples make use of data.csv which provides returns for a handful of funds over 1970-2019.
Find best portfolio allocation to minimize the required timeframe to achieve a target value
from portfoliofinder import Allocations
Allocations(0.05, ['USA_TSM', 'WLDx_TSM', 'USA_INT', 'EM'])\
.filter('USA_TSM>=0.6 & WLDx_TSM<=0.2 & USA_INT>=0.3')\
.with_returns(csv="data.csv")\
.with_regular_contributions(100000, 10000)\
.get_backtested_timeframes(target_value=1000000)\
.get_statistics(['min', 'max', 'mean', 'std'])\
.filter_by_min_of('max')\
.filter_by_max_of('min')\
.get_allocation_which_min_statistic('std')
Output
Statistic
min 14.000000
max 22.000000
mean 16.965517
std 2.809204
Name: Allocation(USA_TSM=0.65, WLDx_TSM=0.0, USA_INT=0.3, EM=0.05), dtype: float64
Find best portfolio allocation to maximize value with minimal risk over a fixed timeframe
from portfoliofinder import Allocations
Allocations(0.05, ['USA_TSM', 'WLDx_TSM', 'USA_INT', 'EM'])\
.filter('USA_TSM>=0.6 & WLDx_TSM<=0.2 & USA_INT>=0.3')\
.with_returns(csv="data.csv")\
.with_regular_contributions(100000, 10000)\
.get_backtested_values(timeframe=10)\
.get_statistics(['mean', 'std'])\
.filter_by_gte_percentile_of(90, 'mean')\
.get_allocation_which_min_statistic('std')
Output
Statistic
mean 446560.590088
std 117448.007302
Name: Allocation(USA_TSM=0.6, WLDx_TSM=0.0, USA_INT=0.3, EM=0.1), dtype: float64
Graph statistics from multiple portfolio allocations to visualize their efficient frontier
from portfoliofinder import Allocations
Allocations(0.05, ['USA_TSM', 'WLDx_TSM', 'USA_INT', 'EM'])\
.filter('USA_TSM>=0.2 & USA_INT>=0.2')\
.with_returns(csv="data.csv")\
.with_regular_contributions(100000, 10000)\
.get_backtested_values(timeframe=10)\
.get_statistics()\
.graph('std', 'mean')
Output
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
portfoliofinder-0.2.2.tar.gz
(2.8 kB
view hashes)
Built Distribution
Close
Hashes for portfoliofinder-0.2.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 348363010604196ad54d2a5684dd6c769d840d1d952a80832a7ff04605e0de27 |
|
MD5 | 96d026293612d8ddfe483b77de516a62 |
|
BLAKE2b-256 | e9135efe386f5181165e06c424fe970873002b7926815226bea45d40b07a3998 |