Skip to main content

Python client library for the Portkey API

Project description


Control Panel for AI Apps

pip install portkey-ai

Features

The Portkey SDK is built on top of the OpenAI SDK, allowing you to seamlessly integrate Portkey's advanced features while retaining full compatibility with OpenAI methods. With Portkey, you can enhance your interactions with OpenAI or any other OpenAI-like provider by leveraging robust monitoring, reliability, prompt management, and more features - without modifying much of your existing code.

AI Gateway

Unified API Signature
If you've used OpenAI, you already know how to use Portkey with any other provider.
Interoperability
Write once, run with any provider. Switch between any model from_any provider seamlessly.
Automated Fallbacks & Retries
Ensure your application remains functional even if a primary service fails.
Load Balancing
Efficiently distribute incoming requests among multiple models.
Semantic Caching
Reduce costs and latency by intelligently caching results.
Virtual Keys
Secure your LLM API keys by storing them in Portkey vault and using disposable virtual keys.
Request Timeouts
Manage unpredictable LLM latencies effectively by setting custom request timeouts on requests.

Observability

Logging
Keep track of all requests for monitoring and debugging.
Requests Tracing
Understand the journey of each request for optimization.
Custom Metadata
Segment and categorize requests for better insights.
Feedbacks
Collect and analyse weighted feedback on requests from users.
Analytics
Track your app & LLM's performance with 40+ production-critical metrics in a single place.

Usage

Prerequisites

  1. Sign up on Portkey and grab your Portkey API Key
  2. Add your OpenAI key to Portkey's Virtual Keys page and keep it handy
# Installing the SDK

$ pip install portkey-ai
$ export PORTKEY_API_KEY=PORTKEY_API_KEY

Making a Request to OpenAI

  • Portkey fully adheres to the OpenAI SDK signature. You can instantly switch to Portkey and start using our production features right out of the box.
  • Just replace from openai import OpenAI with from portkey_ai import Portkey:
from portkey_ai import Portkey

portkey = Portkey(
    api_key="PORTKEY_API_KEY",
    virtual_key="VIRTUAL_KEY"
)

chat_completion = portkey.chat.completions.create(
    messages = [{ "role": 'user', "content": 'Say this is a test' }],
    model = 'gpt-4'
)

print(chat_completion)

Async Usage

  • Use AsyncPortkey instead of Portkey with await:
import asyncio
from portkey_ai import AsyncPortkey

portkey = AsyncPortkey(
    api_key="PORTKEY_API_KEY",
    virtual_key="VIRTUAL_KEY"
)

async def main():
    chat_completion = await portkey.chat.completions.create(
        messages=[{'role': 'user', 'content': 'Say this is a test'}],
        model='gpt-4'
    )

    print(chat_completion)

asyncio.run(main())

Strands Agents Integration (optional)

Installation:

pip install 'portkey-ai[strands]'

Usage with Strands:

from strands.agent import Agent
from portkey_ai.integrations.strands import PortkeyStrands

model = PortkeyStrands(
    api_key="PORTKEY_API_KEY",
    model_id="@openai/gpt-4o-mini",
#   base_url="https://api.portkey.ai/v1",  ## Optional    
)

agent = Agent(model=model)

import asyncio

async def main():
    result = await agent.invoke_async("Tell me a short programming joke.")
    print(getattr(result, "text", result))

asyncio.run(main())

Google ADK Integration (optional)

Installation:

pip install 'portkey-ai[adk]'

Usage with ADK:

import asyncio
from google.adk.models.llm_request import LlmRequest
from google.genai import types
from portkey_ai.integrations.adk import PortkeyAdk

llm = PortkeyAdk(
    api_key="PORTKEY_API_KEY",
    model="@openai/gpt-4o-mini",
#   base_url="https://api.portkey.ai/v1",  ## Optional    
)

req = LlmRequest(
    model="@openai/gpt-4o-mini",
    contents=[
        types.Content(
            role="user",
            parts=[types.Part.from_text(text="Tell me a short programming joke.")],
        )
    ],
)

async def main():
    # Print only partial chunks to avoid duplicate final output
    async for resp in llm.generate_content_async(req, stream=True):
        if getattr(resp, "partial", False) and resp.content and resp.content.parts:
            for p in resp.content.parts:
                if getattr(p, "text", None):
                    print(p.text, end="")
    print()

asyncio.run(main())

Non-streaming example (single final response):

import asyncio
from google.adk.models.llm_request import LlmRequest
from google.genai import types
from portkey_ai.integrations.adk import PortkeyAdk

llm = PortkeyAdk(
    api_key="PORTKEY_API_KEY",
    model="@openai/gpt-4o-mini",
)

req = LlmRequest(
    model="@openai/gpt-4o-mini",
    contents=[
        types.Content(
            role="user",
            parts=[types.Part.from_text(text="Give me a one-line programming joke (final only).")],
        )
    ],
)

async def main():
    final_text = []
    async for resp in llm.generate_content_async(req, stream=False):
        if resp.content and resp.content.parts:
            for p in resp.content.parts:
                if getattr(p, "text", None):
                    final_text.append(p.text)
    print("".join(final_text))

asyncio.run(main())

Configuration notes:

  • system_role: By default, the adapter sends the system instruction as a developer role message to align with ADK. If your provider expects a strict system role, pass system_role="system" when constructing PortkeyAdk.

    llm = PortkeyAdk(
        model="@openai/gpt-4o-mini",
        api_key="PORTKEY_API_KEY",
        system_role="system",  # switch from default "developer"
    )
    
  • Tools: When tools are present in the ADK request, the adapter sets tool_choice="auto" to enable function calling by default (mirrors the Strands adapter behavior).

Compatibility with OpenAI SDK

Portkey currently supports all the OpenAI methods, including the legacy ones.

Methods OpenAI
V1.26.0
Portkey
V1.3.1
Audio
Chat
Embeddings
Images
Fine-tuning
Batch
Files
Models
Moderations
Assistants
Threads
Thread - Messages
Thread - Runs
Thread - Run - Steps
Vector Store
Vector Store - Files
Vector Store - Files Batches
Generations ❌ (Deprecated)
Completions ❌ (Deprecated)

Portkey-Specific Methods

Methods Portkey
V1.3.1
Feedback
Prompts

Check out Portkey docs for the full list of supported providers

follow on Twitter Discord

Contributing

Get started by checking out Github issues. Email us at support@portkey.ai or just ping on Discord to chat.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

portkey_ai-1.15.1.tar.gz (541.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

portkey_ai-1.15.1-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file portkey_ai-1.15.1.tar.gz.

File metadata

  • Download URL: portkey_ai-1.15.1.tar.gz
  • Upload date:
  • Size: 541.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.23

File hashes

Hashes for portkey_ai-1.15.1.tar.gz
Algorithm Hash digest
SHA256 08eaf7e3255dc943e851cd7b1b0271a7df5a8ccd090afe5d1c3da859df416c47
MD5 c6778df7dea14b9ebed0ae98a3f014b9
BLAKE2b-256 a3f9eb6723a6e67ed0617463749291771d786ac35a6f4f875a3859cb4fab3ac5

See more details on using hashes here.

File details

Details for the file portkey_ai-1.15.1-py3-none-any.whl.

File metadata

  • Download URL: portkey_ai-1.15.1-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.9.23

File hashes

Hashes for portkey_ai-1.15.1-py3-none-any.whl
Algorithm Hash digest
SHA256 271e6093574a48e6dbd0de11ab93f3df5b32fdd119c3bdcb85f0f815df7af74c
MD5 5eacad00eaa7e6f2f28d6c93718b66a3
BLAKE2b-256 0b998d8ccfbc18c85a7392f6561e5387a53c4e2b75bd78d5e2b6b13c06d2a610

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page