Skip to main content

posym module

Project description

Open In Colab PyPI version Test and Deploy DOI

PoSym

A point symmetry analysis tool written in python designed for theoretical chemistry. This tool makes use of continuous symmetry ideas to provide a robust implementation to compute the symmetry of different objects. This library is designed to be easily extendable to other objects by subclassing the SymmetryBase class.

Features

  • Use as simple calculator for irreducible representations supporting direct sum and product
  • Continuous symmetry measures (CSM) expressed in the basis or irreducible representation
  • Determine symmetry of:
    • normal modes
    • functions defined in gaussian basis (molecular orbitals, electronic densities, operators)
    • wave functions defined as a slater determinant
    • wave functions defined as linear combination of slater determinants (Multi-reference/CI)
  • Autogenerated high precision symmetry tables
  • Compatibility with PyQchem (http://www.github.com/abelcarreras/pyqchem)

Requisites

  • numpy
  • scipy
  • pandas
  • yaml

Use as a simple symmetry calculation

Posym allows to create basic continuous symmetry python objects that can be operated using direct sum (+) and direct product (*).

from posym import PointGroup, SymmetryObject

pg = PointGroup(group='Td')
print(pg)

a1 = SymmetryObject(group='Td', rep='A1')
a2 = SymmetryObject(group='Td', rep='A2')
e = SymmetryObject(group='Td', rep='E')
t1 = SymmetryObject(group='Td', rep='T1')

print('t1 * t1:', t1 * t1)
print('t1 * e:', t1 * e)
print('e * (e + a1):', e * (e + a1))

Determine the symmetry of normal modes

Symmetry objects can be obtained from normal modes using SymmetryModes.

from posym import SymmetryNormalModes

coordinates = [[0.00000, 0.0000000, -0.0808819],
               [-1.43262, 0.0000000, -1.2823700],
               [1.43262, 0.0000000, -1.2823700]]

symbols = ['O', 'H', 'H']

normal_modes = [[[0., 0., -0.075],
                 [-0.381, -0., 0.593],
                 [0.381, -0., 0.593]],  # mode 1

                [[-0., -0., 0.044],
                 [-0.613, -0., -0.35],
                 [0.613, 0., -0.35]],  # mode 2

                [[-0.073, -0., -0.],
                 [0.583, 0., 0.397],
                 [0.583, 0., -0.397]]]  # mode 3

frequencies = [1737.01, 3988.5, 4145.43]

sym_modes_gs = SymmetryNormalModes(group='c2v', coordinates=coordinates, modes=normal_modes, symbols=symbols)
for i in range(len(normal_modes)):
  print('Mode {:2}: {:8.3f} :'.format(i + 1, frequencies[i]), sym_modes_gs.get_state_mode(i))

print('Total symmetry: ', sym_modes_gs)

Determine the symmetry of a molecular geometry

Continuous symmetry measure (CSM) is obtained using measure method.

from posym import SymmetryMolecule

coordinates = [[0.0000000000, 0.0000000000, 0.0000000000],
               [0.5541000000, 0.7996000000, 0.4965000000],
               [0.6833000000, -0.8134000000, -0.2536000000],
               [-0.7782000000, -0.3735000000, 0.6692000000],
               [-0.4593000000, 0.3874000000, -0.9121000000]]

symbols = ['C', 'H', 'H', 'H', 'H']

sym_geom = SymmetryMolecule(group='Td', coordinates=coordinates, symbols=symbols)
print('Symmetry measure Td : ', sym_geom.measure)

sym_geom = SymmetryMolecule(group='C3v', coordinates=coordinates, symbols=symbols)
print('Symmetry measure C3v : ', sym_geom.measure)

sym_geom = SymmetryMolecule(group='C4v', coordinates=coordinates, symbols=symbols)
print('Symmetry measure C4v : ', sym_geom.measure)

Define basis set functions in gaussian basis

Define basis function as linear combination of gaussian that act as normal python functions

from posym.basis import PrimitiveGaussian, BasisFunction

# Oxigen atom
sa = PrimitiveGaussian(alpha=130.70932)
sb = PrimitiveGaussian(alpha=23.808861)
sc = PrimitiveGaussian(alpha=6.4436083)
s_O = BasisFunction([sa, sb, sc],
                    [0.154328969, 0.535328136, 0.444634536],
                    center=[0.0000000000, 0.000000000, -0.0808819]) # Bohr

sa = PrimitiveGaussian(alpha=5.03315132)
sb = PrimitiveGaussian(alpha=1.1695961)
sc = PrimitiveGaussian(alpha=0.3803890)
s2_O = BasisFunction([sa, sb, sc],
                     [-0.099967228, 0.399512825, 0.700115461],
                     center=[0.0000000000, 0.000000000, -0.0808819])

pxa = PrimitiveGaussian(alpha=5.0331513, l=[1, 0, 0])
pxb = PrimitiveGaussian(alpha=1.1695961, l=[1, 0, 0])
pxc = PrimitiveGaussian(alpha=0.3803890, l=[1, 0, 0])

pya = PrimitiveGaussian(alpha=5.0331513, l=[0, 1, 0])
pyb = PrimitiveGaussian(alpha=1.1695961, l=[0, 1, 0])
pyc = PrimitiveGaussian(alpha=0.3803890, l=[0, 1, 0])

pza = PrimitiveGaussian(alpha=5.0331513, l=[0, 0, 1])
pzb = PrimitiveGaussian(alpha=1.1695961, l=[0, 0, 1])
pzc = PrimitiveGaussian(alpha=0.3803890, l=[0, 0, 1])

px_O = BasisFunction([pxa, pxb, pxc],
                     [0.155916268, 0.6076837186, 0.3919573931],
                     center=[0.0000000000, 0.000000000, -0.0808819])
py_O = BasisFunction([pya, pyb, pyc],
                     [0.155916268, 0.6076837186, 0.3919573931],
                     center=[0.0000000000, 0.000000000, -0.0808819])
pz_O = BasisFunction([pza, pzb, pzc],
                     [0.155916268, 0.6076837186, 0.3919573931],
                     center=[0.0000000000, 0.000000000, -0.0808819])

# Hydrogen atoms
sa = PrimitiveGaussian(alpha=3.42525091)
sb = PrimitiveGaussian(alpha=0.62391373)
sc = PrimitiveGaussian(alpha=0.1688554)
s_H = BasisFunction([sa, sb, sc],
                    [0.154328971, 0.535328142, 0.444634542],
                    center=[-1.43262, 0.000000000, -1.28237])

s2_H = BasisFunction([sa, sb, sc],
                     [0.154328971, 0.535328142, 0.444634542],
                     center=[1.43262, 0.000000000, -1.28237])

basis_set = [s_O, s2_O, px_O, py_O, pz_O, s_H, s2_H]

# Operate with basis functions in analytic form

px_O2 = px_O * px_O
print('integral from -inf to inf:', px_O2.integrate)

# plot functions
from matplotlib import pyplot as plt
import numpy as np

xrange = np.linspace(-5, 5, 100)
plt.plot(xrange, [s_O(x, 0, 0) for x in xrange] , label='s_O')
plt.plot(xrange, [px_O(x, 0, 0) for x in xrange] , label='px_O')
plt.legend()

Create molecular orbitals from basis set

Define molecular orbitals straightforwardly from molecular orbitals coefficients using usual operators

# Orbital 1
o1 = s_O * 0.994216442 + s2_O * 0.025846814 + px_O * 0.0 + py_O * 0.0 + pz_O * -0.004164076 + s_H * -0.005583712 + s2_H * -0.005583712

# Orbital 2
o2 = s_O * 0.23376666 + s2_O * -0.844456594 + px_O * 0.0 + py_O * 0.0 + pz_O * 0.122829781 + s_H * -0.155593214 + s2_H * -0.155593214

# Orbital 3
o3 = s_O * 0.0 + s2_O * 0.0 + px_O * 0.612692349 + py_O * 0.0 + pz_O * 0.0 + s_H * -0.44922168 + s2_H * 0.449221684

# Orbital 4
o4 = s_O * -0.104033343 + s2_O * 0.538153649 + px_O * 0.0 + py_O * 0.0 + pz_O * 0.755880259 + s_H * -0.295107107 + s2_H * -0.2951071074

# Orbital 5
o5 = s_O * 0.0 + s2_O * 0.0 + px_O * 0.0 + py_O * -1.0 + pz_O * 0.0 + s_H * 0.0 + s2_H * 0.0

# Orbital 6
o6 = s_O * -0.125818566 + s2_O * 0.820120983 + px_O * 0.0 + py_O * 0.0 + pz_O * -0.763538862 + s_H * -0.769155124 + s2_H * -0.769155124


# Check orthogonality
print('<o1|o1>: ', (o1*o1).integrate)
print('<o2|o2>: ', (o2*o2).integrate)
print('<o1|o2>: ', (o1*o2).integrate)

Analyze symmetry of molecular orbitals

Get symmetry of molecular orbitals defined as BasisFunction type objects

from posym import SymmetryGaussianLinear

sym_o1 = SymmetryGaussianLinear('c2v', o1)
sym_o2 = SymmetryGaussianLinear('c2v', o2)
sym_o3 = SymmetryGaussianLinear('c2v', o3)
sym_o4 = SymmetryGaussianLinear('c2v', o4)
sym_o5 = SymmetryGaussianLinear('c2v', o5)
sym_o6 = SymmetryGaussianLinear('c2v', o6)

print('Symmetry O1: ', sym_o1)
print('Symmetry O2: ', sym_o2)
print('Symmetry O3: ', sym_o3)
print('Symmetry O4: ', sym_o4)
print('Symmetry O5: ', sym_o5)
print('Symmetry O6: ', sym_o6)

# Operate molecular orbitals symmetries to get the symmetry of non-degenerate wave functions

# restricted close shell
sym_wf_gs = sym_o1 * sym_o1 * sym_o2 * sym_o2 * sym_o3 * sym_o3 * sym_o4 * sym_o4 * sym_o5 * sym_o5
print('Symmetry WF (ground state): ', sym_wf_gs)

# restricted open shell
sym_wf_excited_1 = sym_o1 * sym_o1 * sym_o2 * sym_o2 * sym_o3 * sym_o3 * sym_o4 * sym_o4 * sym_o5 * sym_o6
print('Symmetry WF (excited state 1): ', sym_wf_excited_1)

# restricted close shell
sym_wf_excited_2 = sym_o1 * sym_o1 * sym_o2 * sym_o2 * sym_o3 * sym_o3 * sym_o4 * sym_o4 * sym_o6 * sym_o6
print('Symmetry WF (excited state 2): ', sym_wf_excited_2)

Combine with PyQchem to create useful automations

PyQchem (https://github.com/abelcarreras/PyQchem) is a Python interface for Q-Chem (https://www.q-chem.com). PyQchem can be used to obtain wave functions and normal modes as Python objects that can be directly used in Posym.

from pyqchem import get_output_from_qchem, QchemInput, Structure
from pyqchem.parsers.basic import basic_parser_qchem
from posym import SymmetryGaussianLinear
# convenient functions to connect pyqchem - posym
from posym.tools import get_basis_set, build_orbital

# define molecules
butadiene = Structure(coordinates=[[-1.07076839, -2.13175980, 0.03234382],
                                   [-0.53741536, -3.05918866, 0.04995793],
                                   [-2.14073783, -2.12969357, 0.04016267],
                                   [-0.39112115, -0.95974916, 0.00012984],
                                   [0.67884827, -0.96181542, -0.00769025],
                                   [-1.15875076, 0.37505495, -0.02522296],
                                   [-0.62213437, 1.30041753, -0.05065831],
                                   [-2.51391203, 0.37767199, -0.01531698],
                                   [-3.04726506, 1.30510083, -0.03293196],
                                   [-3.05052841, -0.54769055, 0.01011971]],
                      symbols=['C', 'H', 'H', 'C', 'H', 'C', 'H', 'C', 'H', 'H'])

# create qchem input
qc_input = QchemInput(butadiene,
                      jobtype='sp',
                      exchange='hf',
                      basis='sto-3g',
                      )

# calculate and parse qchem output
data, ee = get_output_from_qchem(qc_input,
                                 read_fchk=True,
                                 processors=4,
                                 parser=basic_parser_qchem)

# extract required information from Q-Chem calculation
coordinates = ee['structure'].get_coordinates()
mo_coefficients = ee['coefficients']['alpha']
basis = ee['basis']

# print results
print('Molecular orbitals (alpha) symmetry')
basis_set = get_basis_set(coordinates, basis)
for i, orbital_coeff in enumerate(mo_coefficients):
  orbital = build_orbital(basis_set, orbital_coeff)
  sym_orbital = SymmetryGaussianLinear('c2v', orbital)
  print('Symmetry O{}: '.format(i + 1), sym_orbital)

Compute the symmetry of wave functions defined as a Slater determinant

Use SymmetryWaveFunction class to determine the symmetry of a wave function from a set of occupied molecular orbitals defined as BasisFunction objects

from posym import SymmetrySingleDeterminant
from posym.tools import build_orbital

# get orbitals from basis set and MO coefficients
orbital1 = build_orbital(basis_set, coefficients['alpha'][0])  # A1
orbital2 = build_orbital(basis_set, coefficients['alpha'][1])  # A1
orbital3 = build_orbital(basis_set, coefficients['alpha'][2])  # T1
orbital4 = build_orbital(basis_set, coefficients['alpha'][3])  # T1
orbital5 = build_orbital(basis_set, coefficients['alpha'][4])  # T1

wf_sym = SymmetrySingleDeterminant('Td',
                                   alpha_orbitals=[orbital1, orbital2, orbital5],
                                   beta_orbitals=[orbital1, orbital2, orbital4],
                                   center=[0, 0, 0])

print('Configuration 1: ', wf_sym)  # T1 + T2

wf_sym = SymmetrySingleDeterminant('Td',
                                   alpha_orbitals=[orbital1, orbital2, orbital3],
                                   beta_orbitals=[orbital1, orbital2, orbital3],
                                   center=[0, 0, 0])

print('Configuration 2: ', wf_sym)  # A1 + E

Compute the symmetry of multi-reference wave functions

Use SymmetryWaveFunctionCI class to determine the symmetry of multi-reference wave function (defined as a liner combination of Slater determinants) from a set of occupied molecular orbitals defined as BasisFunction objects and a configurations dictionary.

from posym import SymmetryMultiDeterminant

configurations = [{'amplitude': -0.03216, 'occupations': {'alpha': [1, 1, 0, 0, 1], 'beta': [1, 1, 1, 0, 0]}},
                  {'amplitude': 0.70637, 'occupations': {'alpha': [1, 1, 0, 1, 0], 'beta': [1, 1, 1, 0, 0]}},
                  {'amplitude': 0.03216, 'occupations': {'alpha': [1, 1, 1, 0, 0], 'beta': [1, 1, 0, 0, 1]}},
                  {'amplitude': -0.70637, 'occupations': {'alpha': [1, 1, 1, 0, 0], 'beta': [1, 1, 0, 1, 0]}}]

wf_sym = SymmetryMultiDeterminant('Td',
                                  orbitals=[orbital1, orbital2, orbital3, orbital4, orbital5],
                                  configurations=configurations,
                                  center=[0, 0, 0])

print('State 1: ', wf_sym)  # T1

Try an interactive example in Google Colab

Bibliography

This software is based on the theory described in the following works:

Pinsky M, Dryzun C, Casanova D, Alemany P, Avnir D, J Comput Chem. 29:2712-21 (2008) [link]
Pinsky M, Casanova D, Alemany P, Alvarez S, Avnir D, Dryzun C, Kizner Z, Sterkin A. J Comput Chem. 29:190-7 (2008) [link]
Casanova D, Alemany P. Phys Chem Chem Phys. 12(47):15523–9 (2010) [link]
Casanova D, Alemany P, Falceto A, Carreras A, Alvarez S. J Comput Chem 34(15):1321–31 (2013) [link]
A. Carreras, E. Bernuz, X. Marugan, M. Llunell, P. Alemany, Chem. Eur. J. 25, 673 – 691 (2019) [link]

Contact info

Abel Carreras
abelcarreras83@gmail.com

Donostia International Physics Center (DIPC)
Donostia-San Sebastian (Spain)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

posym-1.1.1.tar.gz (47.7 kB view hashes)

Uploaded Source

Built Distributions

posym-1.1.1-cp311-cp311-win_amd64.whl (66.0 kB view hashes)

Uploaded CPython 3.11 Windows x86-64

posym-1.1.1-cp311-cp311-win32.whl (61.2 kB view hashes)

Uploaded CPython 3.11 Windows x86

posym-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl (117.5 kB view hashes)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

posym-1.1.1-cp311-cp311-musllinux_1_1_i686.whl (111.3 kB view hashes)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

posym-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.7 kB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

posym-1.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (174.9 kB view hashes)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

posym-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl (66.5 kB view hashes)

Uploaded CPython 3.11 macOS 10.9+ x86-64

posym-1.1.1-cp311-cp311-macosx_10_9_universal2.whl (85.0 kB view hashes)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

posym-1.1.1-cp310-cp310-win_amd64.whl (65.8 kB view hashes)

Uploaded CPython 3.10 Windows x86-64

posym-1.1.1-cp310-cp310-win32.whl (61.0 kB view hashes)

Uploaded CPython 3.10 Windows x86

posym-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl (115.6 kB view hashes)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

posym-1.1.1-cp310-cp310-musllinux_1_1_i686.whl (109.4 kB view hashes)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

posym-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.5 kB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

posym-1.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (174.7 kB view hashes)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

posym-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl (66.3 kB view hashes)

Uploaded CPython 3.10 macOS 10.9+ x86-64

posym-1.1.1-cp310-cp310-macosx_10_9_universal2.whl (84.7 kB view hashes)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

posym-1.1.1-cp39-cp39-win_amd64.whl (65.8 kB view hashes)

Uploaded CPython 3.9 Windows x86-64

posym-1.1.1-cp39-cp39-win32.whl (61.0 kB view hashes)

Uploaded CPython 3.9 Windows x86

posym-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl (115.1 kB view hashes)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

posym-1.1.1-cp39-cp39-musllinux_1_1_i686.whl (109.0 kB view hashes)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

posym-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (175.2 kB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

posym-1.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (174.4 kB view hashes)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

posym-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl (66.3 kB view hashes)

Uploaded CPython 3.9 macOS 10.9+ x86-64

posym-1.1.1-cp39-cp39-macosx_10_9_universal2.whl (84.7 kB view hashes)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

posym-1.1.1-cp38-cp38-win_amd64.whl (65.8 kB view hashes)

Uploaded CPython 3.8 Windows x86-64

posym-1.1.1-cp38-cp38-win32.whl (61.0 kB view hashes)

Uploaded CPython 3.8 Windows x86

posym-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl (116.9 kB view hashes)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

posym-1.1.1-cp38-cp38-musllinux_1_1_i686.whl (110.6 kB view hashes)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

posym-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (176.3 kB view hashes)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

posym-1.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (175.5 kB view hashes)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

posym-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (66.3 kB view hashes)

Uploaded CPython 3.8 macOS 10.9+ x86-64

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page