Skip to main content

Python Optimal Transport Library

Project description

POT: Python Optimal Transport

PyPI version Anaconda Cloud Build Status Codecov Status Downloads Anaconda downloads License

This open source Python library provides several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Website and documentation: https://PythonOT.github.io/

Source Code (MIT): https://github.com/PythonOT/POT

POT provides the following generic OT solvers (links to examples):

POT provides the following Machine Learning related solvers:

Some other examples are available in the documentation.

Using and citing the toolbox

If you use this toolbox in your research and find it useful, please cite POT using the following reference from our JMLR paper:

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, Titouan Vayer,
POT Python Optimal Transport library,
Journal of Machine Learning Research, 22(78):1−8, 2021.
Website: https://pythonot.github.io/

In Bibtex format:

@article{flamary2021pot,
  author  = {R{\'e}mi Flamary and Nicolas Courty and Alexandre Gramfort and Mokhtar Z. Alaya and Aur{\'e}lie Boisbunon and Stanislas Chambon and Laetitia Chapel and Adrien Corenflos and Kilian Fatras and Nemo Fournier and L{\'e}o Gautheron and Nathalie T.H. Gayraud and Hicham Janati and Alain Rakotomamonjy and Ievgen Redko and Antoine Rolet and Antony Schutz and Vivien Seguy and Danica J. Sutherland and Romain Tavenard and Alexander Tong and Titouan Vayer},
  title   = {POT: Python Optimal Transport},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {78},
  pages   = {1-8},
  url     = {http://jmlr.org/papers/v22/20-451.html}
}

Installation

The library has been tested on Linux, MacOSX and Windows. It requires a C++ compiler for building/installing the EMD solver and relies on the following Python modules:

  • Numpy (>=1.16)
  • Scipy (>=1.0)
  • Cython (>=0.23) (build only, not necessary when installing from pip or conda)

Pip installation

You can install the toolbox through PyPI with:

pip install POT

or get the very latest version by running:

pip install -U https://github.com/PythonOT/POT/archive/master.zip # with --user for user install (no root)

Optional dependencies may be installed with

pip install POT[all]

Note that this installs cvxopt, which is licensed under GPL 3.0. Alternatively, if you cannot use GPL-licensed software, the specific optional dependencies may be installed individually, or per-submodule. The available optional installations are backend-jax, backend-tf, backend-torch, cvxopt, dr, gnn, all.

Anaconda installation with conda-forge

If you use the Anaconda python distribution, POT is available in conda-forge. To install it and the required dependencies:

conda install -c conda-forge pot

Post installation check

After a correct installation, you should be able to import the module without errors:

import ot

Note that for easier access the module is named ot instead of pot.

Dependencies

Some sub-modules require additional dependencies which are discussed below

  • ot.dr (Wasserstein dimensionality reduction) depends on autograd and pymanopt that can be installed with:
pip install pymanopt autograd

Examples

Short examples

  • Import the toolbox
import ot
  • Compute Wasserstein distances
# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix
Wd = ot.emd2(a, b, M) # exact linear program
Wd_reg = ot.sinkhorn2(a, b, M, reg) # entropic regularized OT
# if b is a matrix compute all distances to a and return a vector
  • Compute OT matrix
# a,b are 1D histograms (sum to 1 and positive)
# M is the ground cost matrix
T = ot.emd(a, b, M) # exact linear program
T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized OT
  • Compute Wasserstein barycenter
# A is a n*d matrix containing d  1D histograms
# M is the ground cost matrix
ba = ot.barycenter(A, M, reg) # reg is regularization parameter

Examples and Notebooks

The examples folder contain several examples and use case for the library. The full documentation with examples and output is available on https://PythonOT.github.io/.

Acknowledgements

This toolbox has been created by

It is currently maintained by

The numerous contributors to this library are listed here.

POT has benefited from the financing or manpower from the following partners:

ANRCNRS3IAHi!PARIS

Contributions and code of conduct

Every contribution is welcome and should respect the contribution guidelines. Each member of the project is expected to follow the code of conduct.

Support

You can ask questions and join the development discussion:

You can also post bug reports and feature requests in Github issues. Make sure to read our guidelines first.

References

[1] Bonneel, N., Van De Panne, M., Paris, S., & Heidrich, W. (2011, December). Displacement interpolation using Lagrangian mass transport. In ACM Transactions on Graphics (TOG) (Vol. 30, No. 6, p. 158). ACM.

[2] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems (pp. 2292-2300).

[3] Benamou, J. D., Carlier, G., Cuturi, M., Nenna, L., & Peyré, G. (2015). Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138.

[4] S. Nakhostin, N. Courty, R. Flamary, D. Tuia, T. Corpetti, Supervised planetary unmixing with optimal transport, Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2016.

[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1

[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.

[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.

[8] M. Perrot, N. Courty, R. Flamary, A. Habrard (2016), Mapping estimation for discrete optimal transport, Neural Information Processing Systems (NIPS).

[9] Schmitzer, B. (2016). Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems. arXiv preprint arXiv:1610.06519.

[10] Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2016). Scaling algorithms for unbalanced transport problems. arXiv preprint arXiv:1607.05816.

[11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). Wasserstein Discriminant Analysis. arXiv preprint arXiv:1608.08063.

[12] Gabriel Peyré, Marco Cuturi, and Justin Solomon (2016), Gromov-Wasserstein averaging of kernel and distance matrices International Conference on Machine Learning (ICML).

[13] Mémoli, Facundo (2011). Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics 11.4 : 417-487.

[14] Knott, M. and Smith, C. S. (1984).On the optimal mapping of distributions, Journal of Optimization Theory and Applications Vol 43.

[15] Peyré, G., & Cuturi, M. (2018). Computational Optimal Transport .

[16] Agueh, M., & Carlier, G. (2011). Barycenters in the Wasserstein space. SIAM Journal on Mathematical Analysis, 43(2), 904-924.

[17] Blondel, M., Seguy, V., & Rolet, A. (2018). Smooth and Sparse Optimal Transport. Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics (AISTATS).

[18] Genevay, A., Cuturi, M., Peyré, G. & Bach, F. (2016) Stochastic Optimization for Large-scale Optimal Transport. Advances in Neural Information Processing Systems (2016).

[19] Seguy, V., Bhushan Damodaran, B., Flamary, R., Courty, N., Rolet, A.& Blondel, M. Large-scale Optimal Transport and Mapping Estimation. International Conference on Learning Representation (2018)

[20] Cuturi, M. and Doucet, A. (2014) Fast Computation of Wasserstein Barycenters. International Conference in Machine Learning

[21] Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A. & Guibas, L. (2015). Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on Graphics (TOG), 34(4), 66.

[22] J. Altschuler, J.Weed, P. Rigollet, (2017) Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration, Advances in Neural Information Processing Systems (NIPS) 31

[23] Aude, G., Peyré, G., Cuturi, M., Learning Generative Models with Sinkhorn Divergences, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, (AISTATS) 21, 2018

[24] Vayer, T., Chapel, L., Flamary, R., Tavenard, R. and Courty, N. (2019). Optimal Transport for structured data with application on graphs Proceedings of the 36th International Conference on Machine Learning (ICML).

[25] Frogner C., Zhang C., Mobahi H., Araya-Polo M., Poggio T. (2015). Learning with a Wasserstein Loss Advances in Neural Information Processing Systems (NIPS).

[26] Alaya M. Z., Bérar M., Gasso G., Rakotomamonjy A. (2019). Screening Sinkhorn Algorithm for Regularized Optimal Transport, Advances in Neural Information Processing Systems 33 (NeurIPS).

[27] Redko I., Courty N., Flamary R., Tuia D. (2019). Optimal Transport for Multi-source Domain Adaptation under Target Shift, Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS) 22, 2019.

[28] Caffarelli, L. A., McCann, R. J. (2010). Free boundaries in optimal transport and Monge-Ampere obstacle problems, Annals of mathematics, 673-730.

[29] Chapel, L., Alaya, M., Gasso, G. (2020). Partial Optimal Transport with Applications on Positive-Unlabeled Learning, Advances in Neural Information Processing Systems (NeurIPS), 2020.

[30] Flamary R., Courty N., Tuia D., Rakotomamonjy A. (2014). Optimal transport with Laplacian regularization: Applications to domain adaptation and shape matching, NIPS Workshop on Optimal Transport and Machine Learning OTML, 2014.

[31] Bonneel, Nicolas, et al. Sliced and radon wasserstein barycenters of measures, Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45

[32] Huang, M., Ma S., Lai, L. (2021). A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance, Proceedings of the 38th International Conference on Machine Learning (ICML).

[33] Kerdoncuff T., Emonet R., Marc S. Sampled Gromov Wasserstein, Machine Learning Journal (MJL), 2021

[34] Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. (2019, April). Interpolating between optimal transport and MMD using Sinkhorn divergences. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2681-2690). PMLR.

[35] Deshpande, I., Hu, Y. T., Sun, R., Pyrros, A., Siddiqui, N., Koyejo, S., ... & Schwing, A. G. (2019). Max-sliced wasserstein distance and its use for gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10648-10656).

[36] Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., & Stöter, F. R. (2019, May). Sliced-Wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In International Conference on Machine Learning (pp. 4104-4113). PMLR.

[37] Janati, H., Cuturi, M., Gramfort, A. Debiased sinkhorn barycenters Proceedings of the 37th International Conference on Machine Learning, PMLR 119:4692-4701, 2020

[38] C. Vincent-Cuaz, T. Vayer, R. Flamary, M. Corneli, N. Courty, Online Graph Dictionary Learning, International Conference on Machine Learning (ICML), 2021.

[39] Gozlan, N., Roberto, C., Samson, P. M., & Tetali, P. (2017). Kantorovich duality for general transport costs and applications. Journal of Functional Analysis, 273(11), 3327-3405.

[40] Forrow, A., Hütter, J. C., Nitzan, M., Rigollet, P., Schiebinger, G., & Weed, J. (2019, April). Statistical optimal transport via factored couplings. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2454-2465). PMLR.

[41] Chapel*, L., Flamary*, R., Wu, H., Févotte, C., Gasso, G. (2021). Unbalanced Optimal Transport through Non-negative Penalized Linear Regression Advances in Neural Information Processing Systems (NeurIPS), 2020. (Two first co-authors)

[42] Delon, J., Gozlan, N., and Saint-Dizier, A. Generalized Wasserstein barycenters between probability measures living on different subspaces. arXiv preprint arXiv:2105.09755, 2021.

[43] Álvarez-Esteban, Pedro C., et al. A fixed-point approach to barycenters in Wasserstein space. Journal of Mathematical Analysis and Applications 441.2 (2016): 744-762.

[44] Delon, Julie, Julien Salomon, and Andrei Sobolevski. Fast transport optimization for Monge costs on the circle. SIAM Journal on Applied Mathematics 70.7 (2010): 2239-2258.

[45] Hundrieser, Shayan, Marcel Klatt, and Axel Munk. The statistics of circular optimal transport. Directional Statistics for Innovative Applications: A Bicentennial Tribute to Florence Nightingale. Singapore: Springer Nature Singapore, 2022. 57-82.

[46] Bonet, C., Berg, P., Courty, N., Septier, F., Drumetz, L., & Pham, M. T. (2023). Spherical Sliced-Wasserstein. International Conference on Learning Representations.

[47] Chowdhury, S., & Mémoli, F. (2019). The gromov–wasserstein distance between networks and stable network invariants. Information and Inference: A Journal of the IMA, 8(4), 757-787.

[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty (2022). Semi-relaxed Gromov-Wasserstein divergence and applications on graphs. International Conference on Learning Representations (ICLR), 2022.

[49] Redko, I., Vayer, T., Flamary, R., and Courty, N. (2020). CO-Optimal Transport. Advances in Neural Information Processing Systems, 33.

[50] Liu, T., Puigcerver, J., & Blondel, M. (2023). Sparsity-constrained optimal transport. Proceedings of the Eleventh International Conference on Learning Representations (ICLR).

[51] Xu, H., Luo, D., Zha, H., & Duke, L. C. (2019). Gromov-wasserstein learning for graph matching and node embedding. In International Conference on Machine Learning (ICML), 2019.

[52] Collas, A., Vayer, T., Flamary, F., & Breloy, A. (2023). Entropic Wasserstein Component Analysis. ArXiv.

[53] C. Vincent-Cuaz, R. Flamary, M. Corneli, T. Vayer, N. Courty (2022). Template based graph neural network with optimal transport distances. Advances in Neural Information Processing Systems, 35.

[54] Bécigneul, G., Ganea, O. E., Chen, B., Barzilay, R., & Jaakkola, T. S. (2020). Optimal transport graph neural networks.

[55] Ronak Mehta, Jeffery Kline, Vishnu Suresh Lokhande, Glenn Fung, & Vikas Singh (2023). Efficient Discrete Multi Marginal Optimal Transport Regularization. In The Eleventh International Conference on Learning Representations (ICLR).

[56] Jeffery Kline. Properties of the d-dimensional earth mover’s problem. Discrete Applied Mathematics, 265: 128–141, 2019.

[57] Delon, J., Desolneux, A., & Salmona, A. (2022). Gromov–Wasserstein distances between Gaussian distributions. Journal of Applied Probability, 59(4), 1178-1198.

[58] Paty F-P., d’Aspremont 1., & Cuturi M. (2020). Regularity as regularization:Smooth and strongly convex brenier potentials in optimal transport. In International Conference on Artificial Intelligence and Statistics, pages 1222–1232. PMLR, 2020.

[59] Taylor A. B. (2017). Convex interpolation and performance estimation of first-order methods for convex optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2017.

[60] Feydy, J., Roussillon, P., Trouvé, A., & Gori, P. (2019). Fast and scalable optimal transport for brain tractograms. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22 (pp. 636-644). Springer International Publishing.

[61] Charlier, B., Feydy, J., Glaunes, J. A., Collin, F. D., & Durif, G. (2021). Kernel operations on the gpu, with autodiff, without memory overflows. The Journal of Machine Learning Research, 22(1), 3457-3462.

[62] H. Van Assel, C. Vincent-Cuaz, T. Vayer, R. Flamary, N. Courty (2023). Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein. NeurIPS 2023 Workshop Optimal Transport and Machine Learning.

[63] Li, J., Tang, J., Kong, L., Liu, H., Li, J., So, A. M. C., & Blanchet, J. (2022). A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in Graph Data. In The Eleventh International Conference on Learning Representations.

[64] Ma, X., Chu, X., Wang, Y., Lin, Y., Zhao, J., Ma, L., & Zhu, W. (2023). Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications. In Thirty-seventh Conference on Neural Information Processing Systems.

[65] Scetbon, M., Cuturi, M., & Peyré, G. (2021). Low-Rank Sinkhorn Factorization.

[66] Pooladian, Aram-Alexandre, and Jonathan Niles-Weed. Entropic estimation of optimal transport maps. arXiv preprint arXiv:2109.12004 (2021).

[67] Scetbon, M., Peyré, G. & Cuturi, M. (2022). Linear-Time Gromov-Wasserstein Distances using Low Rank Couplings and Costs. In International Conference on Machine Learning (ICML), 2022.

[68] Chowdhury, S., Miller, D., & Needham, T. (2021). Quantized gromov-wasserstein. ECML PKDD 2021. Springer International Publishing.

[69] Delon, J., & Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian mixture models. SIAM Journal on Imaging Sciences, 13(2), 936-970.

[70] A. Thual, H. Tran, T. Zemskova, N. Courty, R. Flamary, S. Dehaene & B. Thirion (2022). Aligning individual brains with Fused Unbalanced Gromov-Wasserstein.. Neural Information Processing Systems (NeurIPS).

[71] H. Tran, H. Janati, N. Courty, R. Flamary, I. Redko, P. Demetci & R. Singh (2023). Unbalanced Co-Optimal Transport. AAAI Conference on Artificial Intelligence.

[72] Thibault Séjourné, François-Xavier Vialard, and Gabriel Peyré (2021). The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation. Neural Information Processing Systems (NeurIPS).

[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). Faster Unbalanced Optimal Transport: Translation Invariant Sinkhorn and 1-D Frank-Wolfe. In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pot-0.9.5.tar.gz (440.8 kB view details)

Uploaded Source

Built Distributions

POT-0.9.5-cp312-cp312-win_amd64.whl (347.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

POT-0.9.5-cp312-cp312-win32.whl (343.7 kB view details)

Uploaded CPython 3.12 Windows x86

POT-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (901.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (894.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp312-cp312-macosx_11_0_arm64.whl (344.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

POT-0.9.5-cp312-cp312-macosx_10_9_x86_64.whl (351.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

POT-0.9.5-cp312-cp312-macosx_10_9_universal2.whl (410.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

POT-0.9.5-cp311-cp311-win_amd64.whl (348.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

POT-0.9.5-cp311-cp311-win32.whl (343.9 kB view details)

Uploaded CPython 3.11 Windows x86

POT-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (897.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (891.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp311-cp311-macosx_11_0_arm64.whl (344.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

POT-0.9.5-cp311-cp311-macosx_10_9_x86_64.whl (351.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

POT-0.9.5-cp311-cp311-macosx_10_9_universal2.whl (411.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

POT-0.9.5-cp310-cp310-win_amd64.whl (348.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

POT-0.9.5-cp310-cp310-win32.whl (344.1 kB view details)

Uploaded CPython 3.10 Windows x86

POT-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (865.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (858.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp310-cp310-macosx_11_0_arm64.whl (344.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

POT-0.9.5-cp310-cp310-macosx_10_9_x86_64.whl (351.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

POT-0.9.5-cp310-cp310-macosx_10_9_universal2.whl (411.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

POT-0.9.5-cp39-cp39-win_amd64.whl (348.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

POT-0.9.5-cp39-cp39-win32.whl (344.1 kB view details)

Uploaded CPython 3.9 Windows x86

POT-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (865.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (858.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp39-cp39-macosx_11_0_arm64.whl (344.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

POT-0.9.5-cp39-cp39-macosx_10_9_x86_64.whl (351.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

POT-0.9.5-cp39-cp39-macosx_10_9_universal2.whl (411.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

POT-0.9.5-cp38-cp38-win_amd64.whl (348.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

POT-0.9.5-cp38-cp38-win32.whl (344.2 kB view details)

Uploaded CPython 3.8 Windows x86

POT-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (867.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (859.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp38-cp38-macosx_11_0_arm64.whl (344.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

POT-0.9.5-cp38-cp38-macosx_10_9_x86_64.whl (351.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

POT-0.9.5-cp38-cp38-macosx_10_9_universal2.whl (411.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

POT-0.9.5-cp37-cp37m-win_amd64.whl (348.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

POT-0.9.5-cp37-cp37m-win32.whl (344.4 kB view details)

Uploaded CPython 3.7m Windows x86

POT-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (854.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

POT-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (845.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

POT-0.9.5-cp37-cp37m-macosx_10_9_x86_64.whl (351.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pot-0.9.5.tar.gz.

File metadata

  • Download URL: pot-0.9.5.tar.gz
  • Upload date:
  • Size: 440.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for pot-0.9.5.tar.gz
Algorithm Hash digest
SHA256 9644ee7ff51c3cffa3c2632b9dd9dff4f3520266f9fb771450935ffb646d6042
MD5 e0949b7c2fa05b25346cf599dc528f24
BLAKE2b-256 c1403e0c8dd88328d944f9d82b30cafd2a1c911bddff0b8bccc8dc9dd5e45b7c

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 347.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 be786612b391c2e4d3b5db4e7d51cdb2360284e3a6949990051c2eb102f60d3c
MD5 316f2e1f0908085c29a68c1edfadac01
BLAKE2b-256 6e9514902c778117ad9ac7af62dd1d951942440c57df991d7f937f416ee6320f

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 343.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 931fa46ff8e01d47309207243988c783a2d8364452bc080b130c5d319349ad3f
MD5 1e5057c67c1b754d562b8c79bda7ef9b
BLAKE2b-256 838dbf8af71e2f36da7598da946a81fbaebb362abaebf6eeba81ebc8efbc860a

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfb18268fac1e982e21821a03f802802a0d579c4690988b764115dd886dc38f5
MD5 4261bb0c77eb04daedf454d635cb0c9f
BLAKE2b-256 5b399c3eed29e954ddbac3ebe68123213826c8995e8acf8b54aa79d1956fda6a

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 088c930a5fcd1e8e36fb6af710df47ce6e9331b6b5a28eb09c673df4186dcb10
MD5 f5c18dfc5090705e3ce2b3a4e76e869d
BLAKE2b-256 bcbdfd000d9217a6cb47f25414d1bfce885fcb28fc23876266422a3a2d8fab31

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bca891c28592d6e0e8f04b35989de7005f0fb9b3923f00537f1b269c5084aa7b
MD5 df2700edd980d2f7afe692c0906bfcd8
BLAKE2b-256 7d97ca785fc539388696838f34ab6bde8ee8ad625999221e3746c8d410f8c20f

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afad647c78f999439f8c5cbcf74b03c5c0afefb08727cd7d68994130fabfc761
MD5 446f96fc814e3311e01224a2c7426b13
BLAKE2b-256 d3d3d9ae1ae96ad461a900b4ffb38f0a830201d4c43135e1a3be48a82e77303e

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7d57f96b333c9816a2af7817753108739b38155e52648c5967681dbd89d92ed2
MD5 c0387ea80e7e953ef0516abbfa6deb0c
BLAKE2b-256 cb95deecc996c5e147159f37191b90a6cf4ee2494e40badc79bed743bfb6478b

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 348.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6680aadb69df2f75a413fe9c58bd1c5cb744d017a7c8ba8841654fd0dc75433b
MD5 01e2bb7d3a108caebd1683be9384cf6b
BLAKE2b-256 feee9cd8b16e4e8e7254951b83fc6f871763e7e1315078b17b7008662833ed63

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 343.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cd79a8b4d35b706f2124f73ebff3bb1ce3450e01cc8f610eda3b6ce13616b829
MD5 079642ace1e200686fb232098dc9fa83
BLAKE2b-256 a1ddaab8edf448d68fa6be6454887667e04a7bf2b2a5929f2ec35c49f83ef286

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7f5d27bc9063e01b03d906bb77e7b3428065fdd72ed64233b249584ead2e2bf
MD5 4c95248cc811d8696488ff7a79a86022
BLAKE2b-256 68e8efc53871cc5b086565702e123d62b37aa40320023b46b30923bb9055b287

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9f44446056f5fc9d132ed8e431732c33cbe754fb1e6d73636f1b6ae811be7df
MD5 bfe4e282d344785c46ae4c1599f58f96
BLAKE2b-256 8dafa99bc77cf4f79ec04b23d415da005e83aa2a2b91d4216045c87f46d3109f

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7eb9b88c73387a9966775a6f6d077d9d071814783701d2656dc05b5032a9662d
MD5 69355a33b47865e7c8c4f180cd522b46
BLAKE2b-256 237ced772734847ada457af0fdb9dd7073bd3823915721bf64147a1434da5a0c

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9eddd9ff29bdb17d4db8ba00ba18d42656c694a128591502bf59afc1369e1bb3
MD5 b93df904c42cc95b2aa670df72a4af83
BLAKE2b-256 43328d319ab8eee96397569115aac644b19136170966667c59b026c277e1b026

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b5f000da00e408ff781672a4895bfa8daacec055bd534c9e66ead479f3c6d83c
MD5 4e4540d3007148280c21ae1a9a4c578f
BLAKE2b-256 0881c9eaa405d40567452d102385a2077b4d34f7961dd7ea3354b7749efd4ea7

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 348.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 043706d69202ac87e140121ba32ed1b038f2b3fc4a5549586187239a583cd50d
MD5 6521378c6c6d322440998841bf50733f
BLAKE2b-256 95002ef88c57c0ee5ff55a95bcb3ff62d904039bb460809d7577ec314b5e7186

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 344.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8312bee055389db47adab063749c8d77b5981534177ca6cd9b91e4fb68f69d00
MD5 ca79bcdfbf825b2095e8a57336fa88a0
BLAKE2b-256 1ce9a1901cbbf765b765ab4adace1711adc3eef01db526dc898e31fbdca653a5

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0dc608cea1107289a58dec33cddc1b0a3fea77ff36d66e2c8ac7aeea543969a
MD5 256fc06a7d9fc6300f0072b45e2dd758
BLAKE2b-256 97ad1724a238cef180c04a3d63e8702cbe91f0abe946eb7a55c3857cd0ac1d9b

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00a18427c9abdd107a2285ea0a814c6b22e95a1af8f88a37c56f23cd216f7a6b
MD5 8ffcad71c6e40d8316f2b86992f110f4
BLAKE2b-256 21497bbb5ac2989abd775ae200cdbcf1a2e023cf07e8d1d6afc7d673d4e380d3

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2f37039cd356198c1fb994e7d935b9bf75d44f2a40319d298bf8cc149eb360d5
MD5 65f47222e679ca38874e5bcc247ef6a0
BLAKE2b-256 3f8717069069948e40fa0e41366e6412322c7849d4b2a0ddae0428d10b571604

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5407377256de11b6fdc94bbba9b50ea5a2301570905fc9014541cc8473806d9
MD5 8c1163016bdc77d5bb3b284c1931589e
BLAKE2b-256 245143c68e7cb1dc7c40286d9e19f6cb599108cd01c2b32307296eba9cb01a05

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 34d766c38e65a69c087b01a854fe89fbd152c3e8af93da2227b6c40aed6d37b9
MD5 1fcd63934b71b00b1ba937601db24b82
BLAKE2b-256 8753acd66a8e50f992e6ca578181009e81d367ad738d0ac135f63d0de3ca92cd

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 348.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2f6af660505772833d4ccc189d9de264b429d9ec8e0cb564f33d2181e6f1bbce
MD5 6db896b607208079d06e7c16da1ff205
BLAKE2b-256 290a3822a5035ac5dce79526113c2c7fa305ffedb8729a53586ef35ad488618d

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 344.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ceea4cffebce88211cd63bfddc878e2f29a6b6347125cbac40fa214308315878
MD5 a2061b1928e47785286d7e8676ec828c
BLAKE2b-256 34c79153c948aac9c466c1538f19363de20cac120c3c5fe8043de03ddb4169ba

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9b775daf69cb4043897050961f9b654c30261543e531d53248a99e5599db0c8
MD5 a7fddbe226dc3a6e1ab5f63dc72eb1de
BLAKE2b-256 650d8f2f4f347cc9de119329a7f606c09d6cd2023aca98376d723c5dc1192a50

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4fa190662670868126a2372499aec513bd4ac50b4565fe2014525c7cef11e2bf
MD5 28e994731b17d36a8813701f59f74bb6
BLAKE2b-256 280e6648c4580fb915ae325e37dbffb4aaacf44524bb604f84da8d38a7db75f1

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e64f5d8890e21eb1e7decac694c34820496238e7d9c95309411e58cb0b04d384
MD5 6a541a11166b2c5e44ea6cc2176f47ad
BLAKE2b-256 e129ba56fd2baa24c88157bdb2249ce14789b9a9dab300115990cea73a06938d

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b1bca1b3465eadab9d5e1c075122963da3e921102555d1c6b7ff3c1f437d3e18
MD5 fcfdfd756a9dd16cb5346e6368a1a8c3
BLAKE2b-256 1b3a639f0c90a3c16926134856a4430af0f931e3a0761758720b92a344185a14

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 95c29ee3e647b272bfcb35c3c4cb7409326a0a6d3bf3ed8460495e9ac3f3a76d
MD5 0ebeeb7bb24b515d144ebaa4aa47ebe6
BLAKE2b-256 426413f31b3cff34d06eaaceb382d936d745be8d5886fb153f8908e61e18c5fd

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 348.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0131aab58d57bf5876d826461d0968d1a655b611cc8c0297c38ab8a235e0d627
MD5 f4fb773d43b5dfb4773de40f6d7470fb
BLAKE2b-256 8869629a7a27120ce62c9726dc8f08e86f7ed82a5e7690c8bf946da4299a0777

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 344.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5996d538885b834e36a3838bc73adeb747bd54ab0a2b3178addbb35b3edafa45
MD5 87e7efd1382b213f92fe192b8d05a3cd
BLAKE2b-256 065fb87cf39faeba506c9bfa7991f6479ab034682680441e694f4bd841efde7d

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 293e0993d66b09db69c2282edbf859e1de57a3f15b99bd909609ce120380b398
MD5 7ae031041a13be70cc464e4018ff9f08
BLAKE2b-256 2969a17df27a49a465f57cecc70d4f9bc3b93f7b4979fab0d629b53992685086

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb29c375d02bb5aadad527133e9c20dd73930d8e2294434dc5306fb740a49d9e
MD5 ae2c4fd7112bcbdcc6fa8f042f7b203f
BLAKE2b-256 ff89d94f21561b93dc84e510f98c921f1e1d4150e1e108af397c12c00244237c

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db0dd974328cbdd7b20477fb5757326dda22d77cb639f4759296fcd206db380f
MD5 cf13a0827b321465a61d49dcfd42d93f
BLAKE2b-256 21f678d0531e1d1aa1dd1763840484c236284188413517a83f06f620a934089c

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b77b630a303868ee14015a4306d7e852b174d4a734815c67e27cd45fd59cc07
MD5 a6d420a16b7566109504ee57c84741ba
BLAKE2b-256 5394f66f3975437f575555e9a5db80190e6390bce5e30b3a7cff364528a71ef2

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 926ba491b5b1f43fb0f3bc6e9d92b6cc634c12e2fa778eba88d9350e82fc2c88
MD5 d305faadde4f3b030aea87f3472d0b61
BLAKE2b-256 cd65b9d892dbe79343714f570489ac1a73c7b1e11416adbb275d9c1dd64bf8b5

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: POT-0.9.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 348.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a9cab787bcb3ce6d23ef297c115baad34ed578a98b4a02afba8cb4e30e39d171
MD5 b7d21e023113faa36e6285f66b3f6565
BLAKE2b-256 3e7bf8d80744f6b3c7e649a53e26599fad6a277e3cef5e6530213b3aa3c772ed

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: POT-0.9.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 344.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for POT-0.9.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc50b8005b4dfa3478f0bf841c22d8b3500a8a04e5673da146d71f7039607e3a
MD5 bb56e0ff5f3de719df172913a7b26a67
BLAKE2b-256 d1f2cc003f6d9e1d81eeecd784d79a539c79d5a810aba8811d565dedecfca735

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a03da3283cb04a1fa3258f0096ad9cfa3311192d5a6bee3a2ca0e15304f8652
MD5 f137dd985f150ce1b5643adfc95e4536
BLAKE2b-256 7f013b042c9f609d6091ce1e094cba68c8922804a0c9899be8a14466314eb652

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a76a5bed3af51db1a10c59ba376f500a743f8e20c2a6d4851c4535dbbed17714
MD5 8eeacb26d3ac98cd6da15d277e1f8b7b
BLAKE2b-256 ac1b2e21aaba340c5a8ff3bef71971b0680c254c7bf2baaa75d239e4e681b96c

See more details on using hashes here.

File details

Details for the file POT-0.9.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for POT-0.9.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 844820020240bad66ca07255289df9ed1e46c5f71ba2401852833c0dd114c660
MD5 1e30a7b4fa45fa51fb0412689e7ca088
BLAKE2b-256 6de1814d1550dc059b7f4e6543158020ad4bf79811e05964b948af09a9713e7c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page