JSB Framework
Project description
Semantic Segmentation and Edge Detection
Setup
# install mmcv and pytorch
# install other dependencies
pip install -r requirements.txt
# If you want to install potato globally
python setup.py develop
Datasets
python tools/convert_datasets/preprocess_cityscapes.py
Training
CUDA_VISIBLE_DEVICES=0,1 ./tools/dist_train.sh <path/to/config> <num_gpus>
Test
Evaluate and Visualize Segmentatation and Edges
CUDA_VISIBLE_DEVICES=0,1 ./tools/dist_train.sh <path/to/config> <path/to/ckpt> <num_gpus> ...
To evaluate F-boundary scores:
# only supports single gpu
CUDA_VISIBLE_DEVICES=0, python tools/test_boundary_fscore.py <path/to/config> <path/to/ckpt> ...
Evaluate Edges
# save edges
CUDA_VISIBLE_DEVICES=0,1 ./tools/dist_train.sh <path/to/config> <path/to/ckpt> <num_gpus> --save-edge ...
python tools/test_edge.py <path/to/config> <path/to/predictions> ...
Evaluating edges will take a very long time (depends on the hardware).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
potato-cv-0.1.0.tar.gz
(82.0 kB
view hashes)
Built Distribution
potato_cv-0.1.0-py3-none-any.whl
(122.4 kB
view hashes)
Close
Hashes for potato_cv-0.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27dd34fc5411d7abe4b830be723bddd3fb340e1ef2007f6d6054dc98357868e5 |
|
MD5 | bdd595dda83dc9f43fbb9b1fc63741e7 |
|
BLAKE2b-256 | 50448975d003dc8e4a9d111515533bdb9c67bc0f5d5c4668a41e7d21eacbe171 |